Logotipo do repositório
 

Publicação:
Parkinson disease identification using residual networks and optimum-path forest

dc.contributor.authorPassos, Leandro A.
dc.contributor.authorPereira, Clayton R. [UNESP]
dc.contributor.authorRezende, Edmar R.S.
dc.contributor.authorCarvalho, Tiago J.
dc.contributor.authorWeber, Silke A.T. [UNESP]
dc.contributor.authorHook, Christian
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionCTI Renato Archer
dc.contributor.institutionIFSP-Federal Institute of São Paulo
dc.contributor.institutionFakultät Informatik/Mathematik
dc.date.accessioned2018-12-11T17:38:32Z
dc.date.available2018-12-11T17:38:32Z
dc.date.issued2018-08-20
dc.description.abstractKnown as one of the most significant neurodegenerative diseases of the central nervous system, Parkinson's disease (PD) has a combination of several symptoms, such as tremor, postural instability, loss of movements, depression, anxiety, and dementia, among others. For the medicine, to point an exam that can diagnose a patient with such illness is challenging due to the symptoms that are easily related to other diseases. Therefore, developing computational methods capable of identifying PD in its early stages has been of paramount importance in the scientific community. Thence, this paper proposes to use a deep neural network called ResNet-50 to learn the patterns and extract features from images draw by patients. Afterwards, the Optimum-Path Forest (OPF) classifier is employed to identify Parkinson's disease automatically, being the results compared against two well-known classifiers, i.e., Support Vector Machines and the Bayes, as well as the ones provided by ResNet-50 itself. The experiments showed promising results concerning OPF, reachinz over 96% of identification rate.en
dc.description.affiliationUFSCAR Federal University of São Carlos Department of Computing
dc.description.affiliationUNESP São Paulo State University School of Sciences
dc.description.affiliationCTI Renato Archer
dc.description.affiliationIFSP-Federal Institute of São Paulo Department of Computing
dc.description.affiliationUNESP São Paulo State University Medical School
dc.description.affiliationOstbayerische Tech. Hochschule Fakultät Informatik/Mathematik
dc.description.affiliationUnespUNESP São Paulo State University School of Sciences
dc.description.affiliationUnespUNESP São Paulo State University Medical School
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: #2013/07375-0
dc.description.sponsorshipIdFAPESP: #2014/12236-1
dc.description.sponsorshipIdFAPESP: #2014/16250-9
dc.description.sponsorshipIdFAPESP: #2015/25739-4
dc.description.sponsorshipIdFAPESP: #2016/21243-7
dc.description.sponsorshipIdCNPq: #306166/2014-3
dc.description.sponsorshipIdCNPq: #307066/2017-7
dc.format.extent325-329
dc.identifierhttp://dx.doi.org/10.1109/SACI.2018.8441012
dc.identifier.citationSACI 2018 - IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Proceedings, p. 325-329.
dc.identifier.doi10.1109/SACI.2018.8441012
dc.identifier.scopus2-s2.0-85053428839
dc.identifier.urihttp://hdl.handle.net/11449/180187
dc.language.isoeng
dc.relation.ispartofSACI 2018 - IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Proceedings
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectMachine Learning
dc.subjectParkinson's Disease
dc.subjectResidual Networks
dc.titleParkinson disease identification using residual networks and optimum-path foresten
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos