Logotipo do repositório
 

Publicação:
Reynolds and Weissenberg numbers in viscoelastic flows

dc.contributor.authorThompson, Roney L.
dc.contributor.authorOishi, Cassio M. [UNESP]
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T15:04:45Z
dc.date.available2021-06-25T15:04:45Z
dc.date.issued2021-06-01
dc.description.abstractOne of the greatest challenges in performing numerical simulations of viscoelastic flow is how to choose the model parameters in order to be able to achieve quantitative agreement with experimental measurements in benchmark geometries. In the present work, we revisit the original concepts of Reynolds (Re) and Weissenberg (Wi) numbers in order to provide means to adequately choose those parameters. In particular, we highlight the importance of the Oldroyd-B model as a reference for viscoelastic behavior and propose a new methodology for the comparison between general viscoelastic models and the Oldroyd-B model. We identify inconsistencies in the usual approach consensually adopted in the literature. The historical reason for that seems to have its root on the fact that Reynolds and Weissenberg numbers are recognized as expressions and not as concepts. This paradigm allows the choice of parameters of a model as characteristic quantities. We propose here to choose the Oldroyd-B model parameters for the comparison with more complex viscoelastic models so that Re and Wi concepts are maintained. To illustrate this matter, we simulate a flow which is known for capturing an important viscoelastic effect, the transient extrudate swell problem. We tested three viscoelastic models with intermediate levels of complexity, namely PTT, Giesekus, and FENE-P. The traditional and the proposed approaches are compared and the role of the extra parameter, that endows these models with a nonlinear character with respect to the stress, is reinterpreted. It is demonstrated that the nonlinearity introduced by this extra parameter is overestimated in the usual formulation.en
dc.description.affiliationUniv Fed Rio de Janeiro, Ctr Tecnol, Dept Mech Engn, COPPE, BR-24210240 Rio De Janeiro, RJ, Brazil
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias & Tecnol, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 304095/2018-4
dc.description.sponsorshipIdCNPq: 305383/2019-1
dc.description.sponsorshipIdCAPES: PROEX 803/2018
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.format.extent10
dc.identifierhttp://dx.doi.org/10.1016/j.jnnfm.2021.104550
dc.identifier.citationJournal Of Non-newtonian Fluid Mechanics. Amsterdam: Elsevier, v. 292, 10 p., 2021.
dc.identifier.doi10.1016/j.jnnfm.2021.104550
dc.identifier.issn0377-0257
dc.identifier.urihttp://hdl.handle.net/11449/210318
dc.identifier.wosWOS:000648748200008
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofJournal Of Non-newtonian Fluid Mechanics
dc.sourceWeb of Science
dc.titleReynolds and Weissenberg numbers in viscoelastic flowsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.departmentMatemática e Computação - FCTpt

Arquivos