Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Biochemical study and digestion profile of olive oil by LipBK: Revealing the potential applications of a new acid/broad thermal range true lipase

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis. The secreted lipase was purified and exhibited high hydrolytic activity, specifically targeting long-chain fatty acids. Gas chromatography analyses confirmed its ability to hydrolyze fatty acids present in olive oil, while kinetic parameters and substrate preferences were assessed using synthetic substrates. Optimal activity was observed at pH 4.5 and temperatures between 40 and 60 °C. The enzyme demonstrated remarkable thermal stability, retaining over 78 % residual activity after 24 h at 30, 40, 60, and even 70 °C. It also displayed broad pH stability, with increased relative activity at pH 6.5 over time. LipBK showed resilience in the presence of metallic ions, salts, EDTA, and non-ionic detergents, with enhanced activity in the presence of additives like KCl, CaCl₂, and Triton X-100. These properties highlight its robustness and suitability for applications in acidic and thermally variable environments, such as biodiesel production, waste treatment, and sustainable industrial processes, contributing to global sustainability goals.

Descrição

Palavras-chave

Acidic enzyme, Bacterial lipase, Biocatalysis, Fatty acid hydrolysis, Thermostability

Idioma

Inglês

Citação

International Journal of Biological Macromolecules, v. 297.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Ciências Agrárias e Veterinárias
FCAV
Campus: Jaboticabal


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso