Asymmetric polyethersulfone membranes modified with polyelectrolyte complexes: Morphology, thermal analysis and transport properties
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Mixing additives into a polymeric membrane constitutes an easy way to change their properties. Polyelectrolyte complexes (PECs) (polyelectrolytes combined via electrostatic interaction) are good materials for this due to their hy-drophilicity, tunable surface charge, and stable structure. In the present study, membranes containing PECs were obtained using three methodologies: complexation before, after, and during membrane formation. The chosen polyelectrolytes were 4-fluorophenyl sulfone-terminated poly(diallylpiperidinium hexafluorophosphate) and sulfonated poly(ethylene terephtha-late); the polymeric matrix was polyethersulfone. Fourier transform infrared spectroscopy confirmed the presence of PECs in the membranes. Scanning electron microscopy images of the membranes showed a dense skin and porous sub-layer, with variations in the thickness of the dense layer influenced by the presence of polyelectrolytes. The increase in water vapor permeability indicated that the complexes alter the hydrophilic profile of the membranes. The thermogravimetric curves showed different thermal behaviors depending on the interaction between the polyelectrolytes. All membranes demonstrated enhanced retention of Remazol red dye during filtration, with retention rates exceeding 95%. Notably, the Blend membrane exhibited the highest retention (over 98%) of the dye.
Descrição
Palavras-chave
phase inversion, poly(diallylpiperidinium), polymeric membrane, Remazol red dye, sulfonated poly(ethylene terephthalate)
Idioma
Inglês
Citação
Express Polymer Letters, v. 18, n. 3, p. 245-259, 2024.




