Logotipo do repositório
 

Publicação:
Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization

dc.contributor.authorRodrigues, Douglas
dc.contributor.authorSouza, Andre Nunes [UNESP]
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T17:48:13Z
dc.date.available2018-11-26T17:48:13Z
dc.date.issued2017-01-01
dc.description.abstractMulti-objective optimization plays an important role when one has fitness functions that are somehow conflicting with each other. Also, parameter-dependent machine learning techniques can benefit from such optimization tools. In this paper, we propose a multi-objective-based strategy approach to build compact though representative training sets for Optimum-Path Forest (OPF) learning purposes. Although OPF pruning can provide such a nice representation, it comes with the price of being parameter-dependent. The proposed approach cope with that problem by avoiding the classifier to be hand-tuned by modeling the task of parameter learning as a multi-objective-oriented optimization problem, which can be less prone to errors. Experiments on public datasets show the robustness of the proposed approach, which is now parameterless and userfriendly.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Elect Engn, Bauru, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Elect Engn, Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Bauru, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent127-133
dc.identifierhttp://dx.doi.org/10.1109/SIBGRAPI.2017.23
dc.identifier.citation2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 127-133, 2017.
dc.identifier.doi10.1109/SIBGRAPI.2017.23
dc.identifier.issn1530-1834
dc.identifier.urihttp://hdl.handle.net/11449/163865
dc.identifier.wosWOS:000425243500017
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titlePruning Optimum-Path Forest Classifiers Using Multi-Objective Optimizationen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.author.lattes8212775960494686[2]
unesp.author.orcid0000-0002-8617-5404[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos