Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
| dc.contributor.author | Rodrigues, Douglas | |
| dc.contributor.author | Souza, Andre Nunes [UNESP] | |
| dc.contributor.author | Papa, Joao Paulo [UNESP] | |
| dc.contributor.author | IEEE | |
| dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
| dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
| dc.date.accessioned | 2018-11-26T17:48:13Z | |
| dc.date.available | 2018-11-26T17:48:13Z | |
| dc.date.issued | 2017-01-01 | |
| dc.description.abstract | Multi-objective optimization plays an important role when one has fitness functions that are somehow conflicting with each other. Also, parameter-dependent machine learning techniques can benefit from such optimization tools. In this paper, we propose a multi-objective-based strategy approach to build compact though representative training sets for Optimum-Path Forest (OPF) learning purposes. Although OPF pruning can provide such a nice representation, it comes with the price of being parameter-dependent. The proposed approach cope with that problem by avoiding the classifier to be hand-tuned by modeling the task of parameter learning as a multi-objective-oriented optimization problem, which can be less prone to errors. Experiments on public datasets show the robustness of the proposed approach, which is now parameterless and userfriendly. | en |
| dc.description.affiliation | Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, Brazil | |
| dc.description.affiliation | Sao Paulo State Univ, Dept Elect Engn, Bauru, Brazil | |
| dc.description.affiliation | Sao Paulo State Univ, Dept Comp, Bauru, Brazil | |
| dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Elect Engn, Bauru, Brazil | |
| dc.description.affiliationUnesp | Sao Paulo State Univ, Dept Comp, Bauru, Brazil | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorshipId | FAPESP: 2014/12236-1 | |
| dc.description.sponsorshipId | FAPESP: 2016/19403-6 | |
| dc.description.sponsorshipId | CNPq: 306166/2014-3 | |
| dc.format.extent | 127-133 | |
| dc.identifier | http://dx.doi.org/10.1109/SIBGRAPI.2017.23 | |
| dc.identifier.citation | 2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 127-133, 2017. | |
| dc.identifier.doi | 10.1109/SIBGRAPI.2017.23 | |
| dc.identifier.issn | 1530-1834 | |
| dc.identifier.uri | http://hdl.handle.net/11449/163865 | |
| dc.identifier.wos | WOS:000425243500017 | |
| dc.language.iso | eng | |
| dc.publisher | Ieee | |
| dc.relation.ispartof | 2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi) | |
| dc.rights.accessRights | Acesso aberto | pt |
| dc.source | Web of Science | |
| dc.title | Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization | en |
| dc.type | Trabalho apresentado em evento | pt |
| dcterms.license | http://www.ieee.org/publications_standards/publications/rights/rights_policies.html | |
| dcterms.rightsHolder | Ieee | |
| dspace.entity.type | Publication | |
| relation.isDepartmentOfPublication | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isDepartmentOfPublication | 4c2e649a-dc0d-49ec-bc7f-f5f46e998cd2 | |
| relation.isDepartmentOfPublication.latestForDiscovery | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
| relation.isOrgUnitOfPublication | aef1f5df-a00f-45f4-b366-6926b097829b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | aef1f5df-a00f-45f4-b366-6926b097829b | |
| unesp.author.lattes | 8212775960494686[2] | |
| unesp.author.orcid | 0000-0002-8617-5404[2] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
| unesp.department | Computação - FC | pt |
| unesp.department | Engenharia Elétrica - FEB | pt |
