Repository logo
 

Publication:
Topological line defects in graphene for applications in gas sensing

Loading...
Thumbnail Image

Advisor

Coadvisor

Graduate program

Undergraduate course

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier B.V.

Type

Article

Access right

Acesso abertoAcesso Aberto

Abstract

Topological line defects in graphene synthesized in a highly controlled manner open up new research directions for nanodevice applications. Here, we investigate two types of extended line defects in graphene, namely octagonal/pentagonal and heptagonal/pentagonal reconstructions. A combination of density functional theory and non-equilibrium Green's function methods was utilized in order to explore the application potential of this system as an electronic gas sensor. Our findings show that the electric current is confined to the line defect through gate voltage control, which combined with the enhanced chemical reactivity at the grain boundary, makes this system a highly promising candidate for gas sensor applications. As a proof of principle, we evaluated the sensitivity of a prototypical device toward NO2 molecule, demonstrating that it is indeed possible to reliably detect the target molecule. (C) 2017 Elsevier Ltd. All rights reserved.

Description

Keywords

Nanosensor, Graphene, Electronic transport

Language

English

Citation

Carbon. Oxford: Pergamon-elsevier Science Ltd, v. 129, p. 803-808, 2018.

Related itens

Units

Departments

Undergraduate courses

Graduate programs