Logotipo do repositório
 

Publicação:
PRBS/EWMA Based Model for Predicting Burst Attacks (Brute Froce, DoS) in Computer Networks

dc.contributor.authorSilva, Anderson [UNESP]
dc.contributor.authorPontes, Elvis
dc.contributor.authorZhou, Fen
dc.contributor.authorGuelft, Adilson
dc.contributor.authorKofuji, Sergio
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniv Avignon
dc.contributor.institutionUniv Oeste Paulista
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-03T18:18:27Z
dc.date.available2019-10-03T18:18:27Z
dc.date.issued2014-01-01
dc.description.abstractBurst attacks (e.g. Brute Force, DoS, DDoS, etc) have become a great concern for the today's computer networks, causing millions of losses to the society. Even though the detection of burst attacks is widely investigated, there is a gap in the academic literature regarding the predicting models for anticipating such security issue. As the frequency of bursts depends on the behavior of the attackers, it is hard to determine the exact moment when a burst starts. In this paper we propose a new model for aggregating peaks of a burst - specifically for the brute force attack - at a single point called One Point Analysis (OPA). We applied the OPA technique in a prototype, so the beginning of each burst was predicted by the use of (a) Pseudo-Random Binary Sequences (PRBS), and (b) Exponential Weighted Moving Averages (EWMA). For evaluating the results, the OPA was compared to other techniques by two indicators, and it was possible coming to a conclusion regarding the OPA effectiveness.en
dc.description.affiliationUniv Sao Paulo, LSI POLI, BR-05508 Sao Paulo, Brazil
dc.description.affiliationUniv Avignon, CERI LIA, Avignon, France
dc.description.affiliationUniv Oeste Paulista, FIPP, Sao Paulo, Brazil
dc.description.affiliationUniv Estadual Paulista, Unip, Sao Paulo, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Unip, Sao Paulo, Brazil
dc.format.extent194-200
dc.identifier.citation2014 Ninth International Conference On Digital Information Management (icdim). New York: Ieee, p. 194-200, 2014.
dc.identifier.urihttp://hdl.handle.net/11449/183944
dc.identifier.wosWOS:000364918800034
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2014 Ninth International Conference On Digital Information Management (icdim)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectbrute force attack
dc.subjectburst attacks
dc.subjectcyber-attack forecasting
dc.subjectEWMA
dc.subjectprediction model
dc.titlePRBS/EWMA Based Model for Predicting Burst Attacks (Brute Froce, DoS) in Computer Networksen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication

Arquivos

Coleções