On (θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra–Stieltjes–type integral equations
| dc.contributor.author | Silva, M. Ap. | |
| dc.contributor.author | Bonotto, E. M. | |
| dc.contributor.author | Collegari, R. | |
| dc.contributor.author | Federson, M. | |
| dc.contributor.author | Gadotti, M. C. [UNESP] | |
| dc.contributor.institution | Universidade Tecnológica Federal do Paraná | |
| dc.contributor.institution | Universidade de São Paulo (USP) | |
| dc.contributor.institution | Universidade Federal de Uberlândia (UFU) | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.date.accessioned | 2025-04-29T18:37:12Z | |
| dc.date.issued | 2025-05-01 | |
| dc.description.abstract | It is known that generalized ordinary differential equations (generalized ODEs for short) encompass other types of equations such as impulsive differential equations as well as dynamic equations on time scales. The present paper concerns the theory of (θ,T)-periodic solutions in the framework of generalized ODEs in Banach spaces. We exhibit necessary and sufficient conditions for a solution of a generalized ODE to be (θ,T)-periodic. Moreover, we develop the Floquet theory of homogeneous linear generalized ODEs and, as a consequence, we present a characterization of fundamental matrices for the finite dimensional case. As an illustration, we apply the main results to Volterra–Stieltjes–type integral equations. | en |
| dc.description.affiliation | Departamento de Matemática Universidade Tecnológica Federal do Paraná | |
| dc.description.affiliation | Departamento de Matemática Aplicada e Estatística ICMC Universidade de São Paulo - São Carlos, Caixa Postal 668 | |
| dc.description.affiliation | Faculdade de Matemática Universidade Federal de Uberlândia - Minas Gerais | |
| dc.description.affiliation | Departamento de Matemática ICMC Universidade de São Paulo - São Carlos, Caixa Postal 668 | |
| dc.description.affiliation | Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Rio Claro | |
| dc.description.affiliationUnesp | Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Rio Claro | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
| dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
| dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | |
| dc.description.sponsorshipId | FAPESP: 2017/13795-2 | |
| dc.description.sponsorshipId | FAPESP: 2018/15183-7 | |
| dc.description.sponsorshipId | FAPESP: 2019/03188-7 | |
| dc.description.sponsorshipId | FAPESP: 2020/14075-6 | |
| dc.description.sponsorshipId | CNPq: 309344/2017-4 | |
| dc.description.sponsorshipId | CNPq: 316169/2023-4 | |
| dc.description.sponsorshipId | FAPEMIG: APQ-00371-18 | |
| dc.identifier | http://dx.doi.org/10.1016/j.nahs.2024.101573 | |
| dc.identifier.citation | Nonlinear Analysis: Hybrid Systems, v. 56. | |
| dc.identifier.doi | 10.1016/j.nahs.2024.101573 | |
| dc.identifier.issn | 1751-570X | |
| dc.identifier.scopus | 2-s2.0-85213080551 | |
| dc.identifier.uri | https://hdl.handle.net/11449/298450 | |
| dc.language.iso | eng | |
| dc.relation.ispartof | Nonlinear Analysis: Hybrid Systems | |
| dc.source | Scopus | |
| dc.subject | (θ, T)-periodic solutions | |
| dc.subject | Floquet theory | |
| dc.subject | Fundamental operator | |
| dc.subject | Generalized ordinary differential equations | |
| dc.subject | Kurzweil integral | |
| dc.subject | Perron-stieltjes integral | |
| dc.subject | Volterra–stieltjes–type integral equations | |
| dc.title | On (θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra–Stieltjes–type integral equations | en |
| dc.type | Artigo | pt |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-7496-1475[2] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claro | pt |

