Logo do repositório

On (θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra–Stieltjes–type integral equations

dc.contributor.authorSilva, M. Ap.
dc.contributor.authorBonotto, E. M.
dc.contributor.authorCollegari, R.
dc.contributor.authorFederson, M.
dc.contributor.authorGadotti, M. C. [UNESP]
dc.contributor.institutionUniversidade Tecnológica Federal do Paraná
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:37:12Z
dc.date.issued2025-05-01
dc.description.abstractIt is known that generalized ordinary differential equations (generalized ODEs for short) encompass other types of equations such as impulsive differential equations as well as dynamic equations on time scales. The present paper concerns the theory of (θ,T)-periodic solutions in the framework of generalized ODEs in Banach spaces. We exhibit necessary and sufficient conditions for a solution of a generalized ODE to be (θ,T)-periodic. Moreover, we develop the Floquet theory of homogeneous linear generalized ODEs and, as a consequence, we present a characterization of fundamental matrices for the finite dimensional case. As an illustration, we apply the main results to Volterra–Stieltjes–type integral equations.en
dc.description.affiliationDepartamento de Matemática Universidade Tecnológica Federal do Paraná
dc.description.affiliationDepartamento de Matemática Aplicada e Estatística ICMC Universidade de São Paulo - São Carlos, Caixa Postal 668
dc.description.affiliationFaculdade de Matemática Universidade Federal de Uberlândia - Minas Gerais
dc.description.affiliationDepartamento de Matemática ICMC Universidade de São Paulo - São Carlos, Caixa Postal 668
dc.description.affiliationInstituto de Geociências e Ciências Exatas Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Rio Claro
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Rio Claro
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdFAPESP: 2017/13795-2
dc.description.sponsorshipIdFAPESP: 2018/15183-7
dc.description.sponsorshipIdFAPESP: 2019/03188-7
dc.description.sponsorshipIdFAPESP: 2020/14075-6
dc.description.sponsorshipIdCNPq: 309344/2017-4
dc.description.sponsorshipIdCNPq: 316169/2023-4
dc.description.sponsorshipIdFAPEMIG: APQ-00371-18
dc.identifierhttp://dx.doi.org/10.1016/j.nahs.2024.101573
dc.identifier.citationNonlinear Analysis: Hybrid Systems, v. 56.
dc.identifier.doi10.1016/j.nahs.2024.101573
dc.identifier.issn1751-570X
dc.identifier.scopus2-s2.0-85213080551
dc.identifier.urihttps://hdl.handle.net/11449/298450
dc.language.isoeng
dc.relation.ispartofNonlinear Analysis: Hybrid Systems
dc.sourceScopus
dc.subject(θ, T)-periodic solutions
dc.subjectFloquet theory
dc.subjectFundamental operator
dc.subjectGeneralized ordinary differential equations
dc.subjectKurzweil integral
dc.subjectPerron-stieltjes integral
dc.subjectVolterra–stieltjes–type integral equations
dc.titleOn (θ,T)-periodic solutions of abstract generalized ODEs and applications to Volterra–Stieltjes–type integral equationsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-7496-1475[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt

Arquivos