Logotipo do repositório
 

Publicação:
Upper Limb Motion Tracking and Classification: A Smartphone Approach

dc.contributor.authorRodrigues, Luis. G. S. [UNESP]
dc.contributor.authorDias, Diego R. C.
dc.contributor.authorGuimarães, Marcelo P.
dc.contributor.authorBrandão, Alexandre F.
dc.contributor.authorRocha, Leonardo C. D. [UNESP]
dc.contributor.authorIope, Rogério L. [UNESP]
dc.contributor.authorBrega, José R. F. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal de Sergipe (UFS)
dc.contributor.institutionBrazilian Institute of Neuroscience and Neurotechnology-BRAINN
dc.date.accessioned2022-04-28T19:45:31Z
dc.date.available2022-04-28T19:45:31Z
dc.date.issued2021-11-05
dc.description.abstractDue to the evolution of motion capture devices, natural user interfaces have been applied in several areas, such as neuromotor rehabilitation supported by virtual environments. This paper presents a smartphone application that allows the user to interact with the virtual environment and enables the captured data to be stored, processed, and used in machine learning models. The application submits the recordings to the remote database with information about the movement and in order to apply supervised machine learning. As a proof of concept, we generated a dataset capturing movement data using our application with 232 instances divided into 8 classes of movements. Moreover, we used this dataset for training models that classifies these movements. The remarkable accuracy of the models shows the feasibility of using body articulation data for a classification task after some data transformations.en
dc.description.affiliationSão Paulo State University-UNESP
dc.description.affiliationFederal University of São João Del-Rei-UFSJ Brazil and Brazilian Institute of Neuroscience and Neurotechnology-BRAINN
dc.description.affiliationBrazilian Institute of Neuroscience and Neurotechnology-BRAINN
dc.description.affiliationFederal University of São João Del-Rei-UFSJ
dc.description.affiliationSão Paulo State University-UNESP Brazil and Brazilian Institute of Neuroscience and Neurotechnology-BRAINN
dc.description.affiliationUnespSão Paulo State University-UNESP
dc.description.affiliationUnespSão Paulo State University-UNESP Brazil and Brazilian Institute of Neuroscience and Neurotechnology-BRAINN
dc.format.extent61-64
dc.identifierhttp://dx.doi.org/10.1145/3470482.3479618
dc.identifier.citationACM International Conference Proceeding Series, p. 61-64.
dc.identifier.doi10.1145/3470482.3479618
dc.identifier.scopus2-s2.0-85116586541
dc.identifier.urihttp://hdl.handle.net/11449/222587
dc.language.isoeng
dc.relation.ispartofACM International Conference Proceeding Series
dc.sourceScopus
dc.subjectaugmented reality
dc.subjectComputer vision
dc.subjectmotion capture
dc.subjectsupervised machine learning
dc.titleUpper Limb Motion Tracking and Classification: A Smartphone Approachen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication

Arquivos

Coleções