Logotipo do repositório
 

Publicação:
New Insights on Nontechnical Losses Characterization Through Evolutionary-Based Feature Selection

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Institute of Electrical and Electronics Engineers (IEEE)

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Although nontechnical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy and to characterize possible illegal consumers has not attracted much attention in this context. In this paper, we focus on this problem by reviewing three evolutionary-based techniques for feature selection, and we also introduce one of them in this context. The results demonstrated that selecting the most representative features can improve a lot of the classification accuracy of possible frauds in datasets composed by industrial and commercial profiles.

Descrição

Palavras-chave

Feature selection, gravitational search algorithm, harmony search, nontechnical losses, optimum-path forest, particle swarm optimization, pattern recognition

Idioma

Inglês

Como citar

IEEE Transactions on Power Delivery. Piscataway: IEEE-Inst Electrical Electronics Engineers Inc, v. 27, n. 1, p. 140-146, 2012.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação