Publicação: Evaluation of the efficiency of artificial neural networks for genetic value prediction
dc.contributor.author | Silva, G. N. | |
dc.contributor.author | Tomaz, R. S. [UNESP] | |
dc.contributor.author | Sant'Anna, I. C. | |
dc.contributor.author | Carneiro, V. Q. | |
dc.contributor.author | Cruz, C. D. | |
dc.contributor.author | Nascimento, M. | |
dc.contributor.institution | Universidade Federal de Viçosa (UFV) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Lab Bioinformat | |
dc.date.accessioned | 2018-11-26T15:29:15Z | |
dc.date.available | 2018-11-26T15:29:15Z | |
dc.date.issued | 2016-01-01 | |
dc.description.abstract | Artificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency. | en |
dc.description.affiliation | Univ Fed Vicosa, Dept Estat, Vicosa, MG, Brazil | |
dc.description.affiliation | Univ Estadual Paulista, Dept Engn Agron, Dracena, SP, Brazil | |
dc.description.affiliation | Univ Fed Vicosa, Dept Biol Geral, Vicosa, MG, Brazil | |
dc.description.affiliation | Lab Bioinformat, Vicosa, MG, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Engn Agron, Dracena, SP, Brazil | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.format.extent | 11 | |
dc.identifier | http://dx.doi.org/10.4238/gmr.15017676 | |
dc.identifier.citation | Genetics And Molecular Research. Ribeirao Preto: Funpec-editora, v. 15, n. 1, 11 p., 2016. | |
dc.identifier.doi | 10.4238/gmr.15017676 | |
dc.identifier.issn | 1676-5680 | |
dc.identifier.lattes | 7689901086405263 | |
dc.identifier.orcid | 0000-0002-5700-5983 | |
dc.identifier.uri | http://hdl.handle.net/11449/158805 | |
dc.identifier.wos | WOS:000373880400069 | |
dc.language.iso | eng | |
dc.publisher | Funpec-editora | |
dc.relation.ispartof | Genetics And Molecular Research | |
dc.rights.accessRights | Acesso restrito | pt |
dc.source | Web of Science | |
dc.subject | Artificial intelligence | |
dc.subject | Simulation | |
dc.subject | Accuracy | |
dc.title | Evaluation of the efficiency of artificial neural networks for genetic value prediction | en |
dc.type | Artigo | pt |
dcterms.rightsHolder | Funpec-editora | |
dspace.entity.type | Publication | |
unesp.author.lattes | 7689901086405263[2] | |
unesp.author.orcid | 0000-0002-5700-5983[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Tecnológicas, Dracena | pt |