Logotipo do repositório
 

Publicação:
Evaluation of the efficiency of artificial neural networks for genetic value prediction

dc.contributor.authorSilva, G. N.
dc.contributor.authorTomaz, R. S. [UNESP]
dc.contributor.authorSant'Anna, I. C.
dc.contributor.authorCarneiro, V. Q.
dc.contributor.authorCruz, C. D.
dc.contributor.authorNascimento, M.
dc.contributor.institutionUniversidade Federal de Viçosa (UFV)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionLab Bioinformat
dc.date.accessioned2018-11-26T15:29:15Z
dc.date.available2018-11-26T15:29:15Z
dc.date.issued2016-01-01
dc.description.abstractArtificial neural networks have shown great potential when applied to breeding programs. In this study, we propose the use of artificial neural networks as a viable alternative to conventional prediction methods. We conduct a thorough evaluation of the efficiency of these networks with respect to the prediction of breeding values. Therefore, we considered eight simulated scenarios, and for the purpose of genetic value prediction, seven statistical parameters in addition to the phenotypic mean in a network designed as a multilayer perceptron. After an evaluation of different network configurations, the results demonstrated the superiority of neural networks compared to estimation procedures based on linear models, and indicated high predictive accuracy and network efficiency.en
dc.description.affiliationUniv Fed Vicosa, Dept Estat, Vicosa, MG, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Engn Agron, Dracena, SP, Brazil
dc.description.affiliationUniv Fed Vicosa, Dept Biol Geral, Vicosa, MG, Brazil
dc.description.affiliationLab Bioinformat, Vicosa, MG, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Engn Agron, Dracena, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent11
dc.identifierhttp://dx.doi.org/10.4238/gmr.15017676
dc.identifier.citationGenetics And Molecular Research. Ribeirao Preto: Funpec-editora, v. 15, n. 1, 11 p., 2016.
dc.identifier.doi10.4238/gmr.15017676
dc.identifier.issn1676-5680
dc.identifier.lattes7689901086405263
dc.identifier.orcid0000-0002-5700-5983
dc.identifier.urihttp://hdl.handle.net/11449/158805
dc.identifier.wosWOS:000373880400069
dc.language.isoeng
dc.publisherFunpec-editora
dc.relation.ispartofGenetics And Molecular Research
dc.rights.accessRightsAcesso restritopt
dc.sourceWeb of Science
dc.subjectArtificial intelligence
dc.subjectSimulation
dc.subjectAccuracy
dc.titleEvaluation of the efficiency of artificial neural networks for genetic value predictionen
dc.typeArtigopt
dcterms.rightsHolderFunpec-editora
dspace.entity.typePublication
unesp.author.lattes7689901086405263[2]
unesp.author.orcid0000-0002-5700-5983[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Tecnológicas, Dracenapt

Arquivos