Publication: Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate
Loading...
Date
Advisor
Coadvisor
Graduate program
Undergraduate course
Journal Title
Journal ISSN
Volume Title
Publisher
Type
Article
Access right
Acesso aberto

Abstract
Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration.
Description
Keywords
Bacterial cellulose, Coated membrane, Regenerative medicine, Tissue regeneration
Language
English
Citation
Materials Science and Engineering C, v. 75, p. 1359-1365.