Logo do repositório

White blood cells segmentation and classification using a random forest and residual networks implementation

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Artificial intelligence algorithms are interesting solutions to automate the tedious manual counting of white blood cells by a specialist. Although interesting machine learning algorithms have been proposed for this task, there is a lack in the literature for high-accuracy methods (more than 99%) tested on larger datasets (more than 10 thousand images). This paper presents a segmentation and classification methodology, based on Random Forest and ResNet50, along with a comparison between ResNet models with different numbers of layers. The segmentation was tested in microscope-like images mounted using multiple single-cell images, widely available in online datasets, yielding 300×300 images to be classified by the residual network. For image classification, ResNet50 reached higher accuracies (99.3%, to the best of our knowledge, the higher accuracy for models with more than 1000 images), with the model size comparison pointing to model overfitting for larger models.

Descrição

Palavras-chave

Classification, Random Forest, Residual Networks, Segmentation, White blood cell count

Idioma

Inglês

Citação

Progress in Biomedical Optics and Imaging - Proceedings of SPIE, v. 12857.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso