Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

A Multilayer Resilience Assessment of Power Distribution Systems with Reliability Models, Service Restoration, and Dynamic Bayesian Networks

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Capítulo de livro

Direito de acesso

Resumo

Electrical energy is fundamental for contemporary society since failures directly impact other critical infrastructures such as water and gas distribution, hospitals, or banking services. Consequently, resilience, which is the capability of a system to handle high-impact low probability events, is a crucial aspect of such systems. Efficient resilience assessment methods are essential to achieving high-performance, resilient energy systems. This chapter introduces a multilayer method to address several factors of power distribution systems’ resilience. Reliability regressions model the failures’ instant and duration given a weather scenario, a dynamic Bayesian network (DBN) models how probabilities of failure propagate on the system’s physical connections, and a service restoration through switching operations, and field crew routing is obtained through an optimization algorithm for a given set of failures. Information related to these factors has the potential to be structured in a layered manner for a better understanding of the dynamic interaction among different information like weather, routes, power grid, and historical events logs. The ability to model these relationships enables the inference of the system resilience for different inputs during analysis. Resilience can also be inferred by considering the uncertainties associated with these layers due to DBN’s nature. A case study is presented to show the efficacy of this procedure. The findings showed its ability to evaluate the resilience of power distribution systems in the face of uncertainty and the considered aspects for different weather scenarios.

Descrição

Palavras-chave

Dynamic bayesian networks, Power distribution systems, Reliability, Resilience assessment, Service restoration

Idioma

Inglês

Citação

Power Systems, v. Part F3518, p. 201-237.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso