Logo do repositório

Electrolyte-Gated Vertical Transistor Charge Transport Enables Photo-Switching

dc.contributor.authorVieira, Douglas Henrique [UNESP]
dc.contributor.authorNogueira, Gabriel Leonardo [UNESP]
dc.contributor.authorMerces, Leandro
dc.contributor.authorBufon, Carlos César Bof
dc.contributor.authorAlves, Neri [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionChemnitz University of Technology
dc.contributor.institutionMackenzie Presbyterian University
dc.date.accessioned2025-04-29T18:37:50Z
dc.date.issued2024-06-01
dc.description.abstractProposals for new architectures that shorten the length of the transistor channel without the need for high-end techniques are the focus of very recent breakthrough research. Although vertical and electrolyte-gate transistors are previously developed separately, recent advances have introduced electrolytes into vertical transistors, resulting in electrolyte-gated vertical field-effect transistors (EGVFETs), which feature lower power consumption and higher capacitance. Here, EGVFETs are employed to study the charge transport mechanism of spray-pyrolyzed zinc oxide (ZnO) films to develop a new photosensitive switch concept. The EGVFET's diode cell revealed a current-voltage relationship arising from space-charge-limited current (SCLC), whereas its capacitor cell provided the field-effect role in charge accumulation in the device's source perforations. The findings elucidate how the field effect causes a continuous shift in SCLC regimes, impacting the switching dynamics of the transistor. It is found ultraviolet light may mimic the field effect, i.e., a pioneering demonstration of current switching as a function of irradiance in an EGVFET. The research provides valuable insights into the charge transport characterization of spray-pyrolyzed ZnO-based transistors, paving the way for future nano- and optoelectronic applications.en
dc.description.affiliationFaculty of Science and Technology (FCT) Physics Department São Paulo State University—UNESP, São Paulo
dc.description.affiliationResearch Center for Materials Architectures and Integration of Nanomembranes (MAIN) Chemnitz University of Technology
dc.description.affiliationMackenzie Presbyterian University, São Paulo
dc.description.affiliationUnespFaculty of Science and Technology (FCT) Physics Department São Paulo State University—UNESP, São Paulo
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 2017/02317-2
dc.description.sponsorshipIdFAPESP: 2018/18136-0
dc.description.sponsorshipIdFAPESP: 2020/12282-4
dc.description.sponsorshipIdFAPESP: 2022/12332-7
dc.identifierhttp://dx.doi.org/10.1002/aelm.202300562
dc.identifier.citationAdvanced Electronic Materials, v. 10, n. 6, 2024.
dc.identifier.doi10.1002/aelm.202300562
dc.identifier.issn2199-160X
dc.identifier.scopus2-s2.0-85182702041
dc.identifier.urihttps://hdl.handle.net/11449/298675
dc.language.isoeng
dc.relation.ispartofAdvanced Electronic Materials
dc.sourceScopus
dc.subjectcharge transport mechanism
dc.subjectelectrolyte-gated transistor
dc.subjectSchottky diode
dc.subjectspray pyrolysis
dc.subjectvertical phototransistor
dc.titleElectrolyte-Gated Vertical Transistor Charge Transport Enables Photo-Switchingen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbbcf06b3-c5f9-4a27-ac03-b690202a3b4e
relation.isOrgUnitOfPublication.latestForDiscoverybbcf06b3-c5f9-4a27-ac03-b690202a3b4e
unesp.author.orcid0000-0002-2813-5842[1]
unesp.author.orcid0000-0002-6202-9824[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências e Tecnologia, Presidente Prudentept

Arquivos