Logotipo do repositório
 

Publicação:
A Multi-level Rank Correlation Measure for Image Retrieval

dc.contributor.authorSa, Nikolas Gomes de [UNESP]
dc.contributor.authorValem, Lucas Pascotti [UNESP]
dc.contributor.authorGuimaraes Pedronette, Daniel Carlos [UNESP]
dc.contributor.authorFarinella, G. M.
dc.contributor.authorRadeva, P.
dc.contributor.authorBraz, J.
dc.contributor.authorBouatouch, K.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2022-04-28T17:21:56Z
dc.date.available2022-04-28T17:21:56Z
dc.date.issued2021-01-01
dc.description.abstractAccurately ranking the most relevant elements in a given scenario often represents a central challenge in many applications, composing the core of retrieval systems. Once ranking structures encode relevant similarity information, measuring how correlated are two rank results represents a fundamental task, with diversified applications. In this work, we propose a new rank correlation measure called Multi-Level Rank Correlation Measure (MLCM), which employs a novel approach based on a multi-level analysis for estimating the correlation between ranked lists. While traditional weighted measures assign more relevance to top positions, our proposed approach goes beyond by considering the position at different levels in the ranked lists. The effectiveness of the proposed measure was assessed in unsupervised and weakly supervised learning tasks for image retrieval. The experimental evaluation considered 6 correlation measures as baselines, 3 different image datasets, and multiple features. The results are competitive or, in most of the cases, superior to the baselines, achieving significant effectiveness gains.en
dc.description.affiliationSao Paulo State Univ, UNESP, Dept Stat Appl Math & Comp, Rio Claro, Brazil
dc.description.affiliationUnespSao Paulo State Univ, UNESP, Dept Stat Appl Math & Comp, Rio Claro, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipMicrosoft Research
dc.description.sponsorshipIdFAPESP: 2018/15597-6
dc.description.sponsorshipIdFAPESP: 2017/25908-6
dc.description.sponsorshipIdFAPESP: 2019/11104-8
dc.description.sponsorshipIdFAPESP: 2020/113660
dc.description.sponsorshipIdCNPq: 308194/2017-9
dc.format.extent370-378
dc.identifierhttp://dx.doi.org/10.5220/0010220903700378
dc.identifier.citationVisapp: Proceedings Of The 16th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications - Vol. 5: Visapp. Setubal: Scitepress, p. 370-378, 2021.
dc.identifier.doi10.5220/0010220903700378
dc.identifier.urihttp://hdl.handle.net/11449/218606
dc.identifier.wosWOS:000661288200037
dc.language.isoeng
dc.publisherScitepress
dc.relation.ispartofVisapp: Proceedings Of The 16th International Joint Conference On Computer Vision, Imaging And Computer Graphics Theory And Applications - Vol. 5: Visapp
dc.sourceWeb of Science
dc.subjectContent-based Image Retrieval
dc.subjectRank Correlation
dc.subjectUnsupervised Learning
dc.subjectInformation Retrieval
dc.titleA Multi-level Rank Correlation Measure for Image Retrievalen
dc.typeTrabalho apresentado em evento
dcterms.rightsHolderScitepress
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentMatemática - IGCEpt

Arquivos