Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Impact of Quantization on Large Language Models for Portuguese Classification Tasks

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Large Language Models have emerged as transformative agents in the frequently evolving landscape of artificial intelligence, reshaping the world towards a disruptive and modern technological era. This paradigm stresses their crucial role in extending the generative capabilities in the context of natural language processing. Generative Artificial Intelligence, an innovative and cutting-edge research topic, is critical to unlocking remarkable opportunities in our era of unparalleled technological progress. Despite the remarkable progress made in language model architectures, their exponential growth still raises pertinent concerns regarding their deployment and the associated costs for retraining efforts tailored to specific tasks. We present a study achieving a detailed analysis of the impact resulting from the application of diverse quantization methodologies on an open-source large language model tailored for Portuguese classification tasks, aka Bode. Our research thoroughly evaluates the performance nuances introduced by various quantization strategies, thus providing valuable insights into the constant concerns surrounding the optimization of large language models, aiming for enhanced efficiency and effectiveness in growing applications for the Portuguese community.

Descrição

Palavras-chave

Bode, Generative Artificial Intelligence, Large Language Models, Natural Language Processing, Quantization

Idioma

Inglês

Citação

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 15368 LNCS, p. 213-227.

Itens relacionados

Financiadores

Unidades

Item type:Unidade,
Faculdade de Ciências
FC
Campus: Bauru


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso