Logo do repositório
 

Improving Optimum-Path Forest Classification Using Confidence Measures

dc.contributor.authorFernandes, Silas E. N.
dc.contributor.authorScheirer, Walter
dc.contributor.authorCox, David D.
dc.contributor.authorPapa, Joao Paulo [UNESP]
dc.contributor.authorPardo, A.
dc.contributor.authorKittler, J.
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionHarvard Univ
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-11-26T16:32:47Z
dc.date.available2018-11-26T16:32:47Z
dc.date.issued2015-01-01
dc.description.abstractMachine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process smarter, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets.en
dc.description.affiliationUniv Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationHarvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
dc.description.affiliationUniv Estadual Paulista, Dept Comp, Ave Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Comp, Ave Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil
dc.format.extent619-625
dc.identifierhttp://dx.doi.org/10.1007/978-3-319-25751-8_74
dc.identifier.citationProgress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015. Cham: Springer Int Publishing Ag, v. 9423, p. 619-625, 2015.
dc.identifier.doi10.1007/978-3-319-25751-8_74
dc.identifier.fileWOS000374793800074.pdf
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/161448
dc.identifier.wosWOS:000374793800074
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofProgress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectOptimum-path forest
dc.subjectSupervised learning
dc.subjectConfidence measures
dc.titleImproving Optimum-Path Forest Classification Using Confidence Measuresen
dc.typeTrabalho apresentado em eventopt
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000374793800074.pdf
Tamanho:
294.43 KB
Formato:
Adobe Portable Document Format
Descrição: