Improving Optimum-Path Forest Classification Using Confidence Measures
dc.contributor.author | Fernandes, Silas E. N. | |
dc.contributor.author | Scheirer, Walter | |
dc.contributor.author | Cox, David D. | |
dc.contributor.author | Papa, Joao Paulo [UNESP] | |
dc.contributor.author | Pardo, A. | |
dc.contributor.author | Kittler, J. | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.contributor.institution | Harvard Univ | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2018-11-26T16:32:47Z | |
dc.date.available | 2018-11-26T16:32:47Z | |
dc.date.issued | 2015-01-01 | |
dc.description.abstract | Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process smarter, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets. | en |
dc.description.affiliation | Univ Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, Brazil | |
dc.description.affiliation | Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA | |
dc.description.affiliation | Univ Estadual Paulista, Dept Comp, Ave Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Dept Comp, Ave Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, Brazil | |
dc.format.extent | 619-625 | |
dc.identifier | http://dx.doi.org/10.1007/978-3-319-25751-8_74 | |
dc.identifier.citation | Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015. Cham: Springer Int Publishing Ag, v. 9423, p. 619-625, 2015. | |
dc.identifier.doi | 10.1007/978-3-319-25751-8_74 | |
dc.identifier.file | WOS000374793800074.pdf | |
dc.identifier.issn | 0302-9743 | |
dc.identifier.uri | http://hdl.handle.net/11449/161448 | |
dc.identifier.wos | WOS:000374793800074 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015 | |
dc.relation.ispartofsjr | 0,295 | |
dc.rights.accessRights | Acesso aberto | pt |
dc.source | Web of Science | |
dc.subject | Optimum-path forest | |
dc.subject | Supervised learning | |
dc.subject | Confidence measures | |
dc.title | Improving Optimum-Path Forest Classification Using Confidence Measures | en |
dc.type | Trabalho apresentado em evento | pt |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
dspace.entity.type | Publication | |
relation.isDepartmentOfPublication | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
relation.isDepartmentOfPublication.latestForDiscovery | 872c0bbb-bf84-404e-9ca7-f87a0fe94e58 | |
relation.isOrgUnitOfPublication | aef1f5df-a00f-45f4-b366-6926b097829b | |
relation.isOrgUnitOfPublication.latestForDiscovery | aef1f5df-a00f-45f4-b366-6926b097829b | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Ciências, Bauru | pt |
unesp.department | Computação - FC | pt |
Arquivos
Pacote original
1 - 1 de 1
Carregando...
- Nome:
- WOS000374793800074.pdf
- Tamanho:
- 294.43 KB
- Formato:
- Adobe Portable Document Format
- Descrição: