Logo do repositório
 

On the Study of Commercial Losses in Brazil: A Binary Black Hole Algorithm for Theft Characterization

dc.contributor.authorRamos, Caio C. O. [UNESP]
dc.contributor.authorRodrigues, Douglas
dc.contributor.authorSouza, Andre N. de [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2018-11-26T17:48:16Z
dc.date.available2018-11-26T17:48:16Z
dc.date.issued2018-03-01
dc.description.abstractAccording to The Brazilian Electricity Regulatory Agency, Brazil reached a loss of approximately U.S.$4 billion in commercial losses during 2011, which correspond to more than 27 000 GWh. The strengthening of the smart grid has brought a considerable amount of research that can be noticed, mainly with respect to the application of several artificial intelligence techniques in order to automatically detect commercial losses, but the problem of selecting the most representative features has not been widely discussed. In this paper, we make a parallel among the problem of commercial losses in Brazil and the task of irregular consumers characterization by means of a recent meta-heuristic optimization technique called Black Hole Algorithm. The experimental setup is conducted over two private datasets (commercial and industrial) provided by a Brazilian electric utility, and it shows the importance of selecting the most relevant features in the context of theft characterization.en
dc.description.affiliationSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Comp Sci Dept, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Elect Engn, BR-17033360 Bauru, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, BR-17033360 Bauru, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2014/16250-0
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.format.extent676-683
dc.identifierhttp://dx.doi.org/10.1109/TSG.2016.2560801
dc.identifier.citationIeee Transactions On Smart Grid. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 9, n. 2, p. 676-683, 2018.
dc.identifier.doi10.1109/TSG.2016.2560801
dc.identifier.fileWOS000425530800017.pdf
dc.identifier.issn1949-3053
dc.identifier.urihttp://hdl.handle.net/11449/163877
dc.identifier.wosWOS:000425530800017
dc.language.isoeng
dc.publisherIeee-inst Electrical Electronics Engineers Inc
dc.relation.ispartofIeee Transactions On Smart Grid
dc.relation.ispartofsjr2,854
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectCommercial losses
dc.subjectblack hole algorithm
dc.subjectoptimum-path forest
dc.titleOn the Study of Commercial Losses in Brazil: A Binary Black Hole Algorithm for Theft Characterizationen
dc.typeArtigopt
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee-inst Electrical Electronics Engineers Inc
dspace.entity.typePublication
relation.isDepartmentOfPublication872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isDepartmentOfPublication.latestForDiscovery872c0bbb-bf84-404e-9ca7-f87a0fe94e58
relation.isOrgUnitOfPublicationaef1f5df-a00f-45f4-b366-6926b097829b
relation.isOrgUnitOfPublication.latestForDiscoveryaef1f5df-a00f-45f4-b366-6926b097829b
unesp.author.lattes8212775960494686[3]
unesp.author.orcid0000-0002-8617-5404[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000425530800017.pdf
Tamanho:
989.12 KB
Formato:
Adobe Portable Document Format
Descrição: