Logotipo do repositório
 

Publicação:
Fine tuning deep boltzmann machines through meta-heuristic approaches

dc.contributor.authorPassos, Leandro A.
dc.contributor.authorRodrigues, Douglas R.
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:38:31Z
dc.date.available2018-12-11T17:38:31Z
dc.date.issued2018-08-20
dc.description.abstractThe Deep learning framework has been widely used in different applications from medicine to engineering. However, there is a lack of works that manage to deal with the issue of hyperparameter fine-tuning, since machine learning techniques often require a considerable human effort in this task. In this paper, we propose to fine-tune Deep Boltzmann Machines using meta-heuristic techniques, which do not require the computation of the gradient of the fitness function, that may be insurmountable in high-dimensional optimization spaces. We demonstrate the validity of the proposed approach against Deep Belief Networks concerning binary image reconstruction.en
dc.description.affiliationUFSCAR Federal University of São Carlos Department of Computing-São
dc.description.affiliationUNESP São Paulo State University School of Sciences
dc.description.affiliationUnespUNESP São Paulo State University School of Sciences
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2014/12236-1
dc.description.sponsorshipIdFAPESP: 2016/19403-6
dc.description.sponsorshipIdCNPq: 306166/2014-3
dc.description.sponsorshipIdCNPq: 307066/2017-7Blz
dc.format.extent419-424
dc.identifierhttp://dx.doi.org/10.1109/SACI.2018.8440959
dc.identifier.citationSACI 2018 - IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Proceedings, p. 419-424.
dc.identifier.doi10.1109/SACI.2018.8440959
dc.identifier.scopus2-s2.0-85053417794
dc.identifier.urihttp://hdl.handle.net/11449/180185
dc.language.isoeng
dc.relation.ispartofSACI 2018 - IEEE 12th International Symposium on Applied Computational Intelligence and Informatics, Proceedings
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.titleFine tuning deep boltzmann machines through meta-heuristic approachesen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos