Logo do repositório

Persistent Cup-Length

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Cohomological ideas have recently been injected into persistent homology and have for example been used for accelerating the calculation of persistence diagrams by the software Ripser. The cup product operation which is available at cohomology level gives rise to a graded ring structure that extends the usual vector space structure and is therefore able to extract and encode additional rich information. The maximum number of cocycles having non-zero cup product yields an invariant, the cup-length, which is useful for discriminating spaces. In this paper, we lift the cup-length into the persistent cup-length function for the purpose of capturing ring-theoretic information about the evolution of the cohomology (ring) structure across a filtration. We show that the persistent cup-length function can be computed from a family of representative cocycles and devise a polynomial time algorithm for its computation. We furthermore show that this invariant is stable under suitable interleaving-type distances.

Descrição

Palavras-chave

cohomology, cup length, cup product, Gromov-Hausdorff distance, persistence

Idioma

Inglês

Citação

Leibniz International Proceedings in Informatics, LIPIcs, v. 224.

Itens relacionados

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso