Logotipo do repositório
 

Publicação:
Metrics for Association Rule Clustering Assessment

dc.contributor.authorCarvalho, Veronica Oliveira de [UNESP]
dc.contributor.authorSantos, Fabiano Fernandes dos
dc.contributor.authorRezende, Solange Oliveira
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2015-10-22T06:12:41Z
dc.date.available2015-10-22T06:12:41Z
dc.date.issued2015-01-01
dc.description.abstractIssues related to association mining have received attention, especially the ones aiming to discover and facilitate the search for interesting patterns. A promising approach, in this context, is the application of clustering in the pre-processing step. In this paper, eleven metrics are proposed to provide an assessment procedure in order to support the evaluation of this kind of approach. To propose the metrics, a subjective evaluation was done. The metrics are important since they provide criteria to: (a) analyze the methodologies, (b) identify their positive and negative aspects, (c) carry out comparisons among them and, therefore, (d) help the users to select the most suitable solution for their problems. Besides, the metrics do the users think about aspects related to the problems and provide a flexible way to solve them. Some experiments were done in order to present how the metrics can be used and their usefulness.en
dc.description.affiliationInstituto de Geociências e Ciências Exatas, UNESP - Universidade Estadual Paulista, Rio Claro, Brazil
dc.description.affiliationInstituto de Ciências Matemáticas e de Computação, USP - Universidade de São Paulo, São Carlos, Brazil
dc.description.affiliationUnespInstituto de Geociências e Ciências Exatas, UNESP - Universidade Estadual Paulista, Rio Claro, Brazil
dc.format.extent97-127
dc.identifierhttp://link.springer.com/chapter/10.1007%2F978-3-662-46335-2_5
dc.identifier.citationTransactions On Large-scale Data- And Knowledge- Centered Systems Xvii. Berlin: Springer-verlag Berlin, v. 8970, p. 97-127, 2015.
dc.identifier.doi10.1007/978-3-662-46335-2_5
dc.identifier.issn0302-9743
dc.identifier.lattes1961581092362881
dc.identifier.urihttp://hdl.handle.net/11449/129596
dc.identifier.wosWOS:000355814500005
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofTransactions On Large-scale Data- And Knowledge- Centered Systems Xvii
dc.relation.ispartofsjr0,295
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectAssociation rulesen
dc.subjectPre-processingen
dc.subjectClusteringen
dc.subjectEvaluation metricsen
dc.titleMetrics for Association Rule Clustering Assessmenten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.lattes1961581092362881
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentEstatística, Matemática Aplicada e Computação - IGCEpt

Arquivos