Logo do repositório

A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

Thermal imaging of venous leg ulcers has helped clinicians make informed wound management decisions. However, thermal cameras are not available in most clinics. To overcome this, we propose a pilot test using deep learning to estimate thermal images from RGB data of the ulcers. Our approach employs stable diffusion techniques, e.g., DreamBooth, LoRA, and ControlNet, to create thermal images from RGB data, addressing the limitations of cost and accessibility in conventional thermal imaging to assist clinicians in assessing the ulcers. While the images' visualization appears helpful, achieving an average structural similarity index measure (SSIM) score of 0.84, this study has yet to test their suitability for a computerized assessment of chronic wounds.

Descrição

Palavras-chave

Image to Image, Leg Ulcer, Machine learning, Stable Diffusion, Thermal Image

Idioma

Inglês

Citação

Proceedings - IEEE Symposium on Computer-Based Medical Systems, p. 158-163.

Itens relacionados

Financiadores

Coleções

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso