A Stable Diffusion Approach for RGB to Thermal Image Conversion for Leg Ulcer Assessment
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Trabalho apresentado em evento
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
Thermal imaging of venous leg ulcers has helped clinicians make informed wound management decisions. However, thermal cameras are not available in most clinics. To overcome this, we propose a pilot test using deep learning to estimate thermal images from RGB data of the ulcers. Our approach employs stable diffusion techniques, e.g., DreamBooth, LoRA, and ControlNet, to create thermal images from RGB data, addressing the limitations of cost and accessibility in conventional thermal imaging to assist clinicians in assessing the ulcers. While the images' visualization appears helpful, achieving an average structural similarity index measure (SSIM) score of 0.84, this study has yet to test their suitability for a computerized assessment of chronic wounds.
Descrição
Palavras-chave
Image to Image, Leg Ulcer, Machine learning, Stable Diffusion, Thermal Image
Idioma
Inglês
Citação
Proceedings - IEEE Symposium on Computer-Based Medical Systems, p. 158-163.





