Logotipo do repositório
 

Publicação:
A high-order immersed interface method free of derivative jump conditions for Poisson equations on irregular domains

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Immersed Interface Methods (IIM) arise as a very effective tool to solve many interface problems encountered in fluid dynamics, mechanics and other related fields of study. Despite their versatility and potential, IIM-inspired techniques impose as constraints different types of jump conditions in order to be mathematically tractable and usable in practice. To cope with this issue, in this paper we introduce a novel Immersed Interface method for solving Poisson equations with discontinuous coefficients on Cartesian grids. Different from most conventional methods which assume some derivative information at the interface to produce a valid approximation, our approach reduces the number of regular constraints when solving the Poisson problem, requiring to be given only the ordinary jumps of the function. We combine Finite Difference schemes, ghost node strategy, correction formulas, and interpolation rules into a unified and stable numerical model. Moreover, the present method is capable of producing high-order solutions from a unique resource of available data. We attest to the accuracy and robustness of our single jump-based method through a variety of numerical experiments comprising Poisson problems with interfaces that can be now solved from a reduced number of jump conditions.

Descrição

Palavras-chave

Finite difference, Immersed interface methods, Irregular domains, Numerical analysis, Poisson equations

Idioma

Inglês

Como citar

Journal of Computational Physics, v. 423.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação