Publicação: A high-order immersed interface method free of derivative jump conditions for Poisson equations on irregular domains
dc.contributor.author | Colnago, Marilaine | |
dc.contributor.author | Casaca, Wallace [UNESP] | |
dc.contributor.author | de Souza, Leandro Franco | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2021-06-25T10:13:23Z | |
dc.date.available | 2021-06-25T10:13:23Z | |
dc.date.issued | 2020-12-15 | |
dc.description.abstract | Immersed Interface Methods (IIM) arise as a very effective tool to solve many interface problems encountered in fluid dynamics, mechanics and other related fields of study. Despite their versatility and potential, IIM-inspired techniques impose as constraints different types of jump conditions in order to be mathematically tractable and usable in practice. To cope with this issue, in this paper we introduce a novel Immersed Interface method for solving Poisson equations with discontinuous coefficients on Cartesian grids. Different from most conventional methods which assume some derivative information at the interface to produce a valid approximation, our approach reduces the number of regular constraints when solving the Poisson problem, requiring to be given only the ordinary jumps of the function. We combine Finite Difference schemes, ghost node strategy, correction formulas, and interpolation rules into a unified and stable numerical model. Moreover, the present method is capable of producing high-order solutions from a unique resource of available data. We attest to the accuracy and robustness of our single jump-based method through a variety of numerical experiments comprising Poisson problems with interfaces that can be now solved from a reduced number of jump conditions. | en |
dc.description.affiliation | Instituto de Ciências Matemáticas e de Computação Universidade de São Paulo (USP), Av. Trabalhador São-carlense 400 | |
dc.description.affiliation | Dept. de Engenharia de Energia Universidade Estadual Paulista (UNESP), Av. dos Barrageiros 1881 | |
dc.description.affiliationUnesp | Dept. de Engenharia de Energia Universidade Estadual Paulista (UNESP), Av. dos Barrageiros 1881 | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | FAPESP: 2013/07375-0 | |
dc.description.sponsorshipId | CAPES: DS-7250509/D | |
dc.identifier | http://dx.doi.org/10.1016/j.jcp.2020.109791 | |
dc.identifier.citation | Journal of Computational Physics, v. 423. | |
dc.identifier.doi | 10.1016/j.jcp.2020.109791 | |
dc.identifier.issn | 1090-2716 | |
dc.identifier.issn | 0021-9991 | |
dc.identifier.scopus | 2-s2.0-85092691557 | |
dc.identifier.uri | http://hdl.handle.net/11449/205323 | |
dc.language.iso | eng | |
dc.relation.ispartof | Journal of Computational Physics | |
dc.source | Scopus | |
dc.subject | Finite difference | |
dc.subject | Immersed interface methods | |
dc.subject | Irregular domains | |
dc.subject | Numerical analysis | |
dc.subject | Poisson equations | |
dc.title | A high-order immersed interface method free of derivative jump conditions for Poisson equations on irregular domains | en |
dc.type | Artigo | pt |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-1073-9939[2] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Rosana | pt |