Logotipo do repositório
 

Publicação:
A high-order immersed interface method free of derivative jump conditions for Poisson equations on irregular domains

dc.contributor.authorColnago, Marilaine
dc.contributor.authorCasaca, Wallace [UNESP]
dc.contributor.authorde Souza, Leandro Franco
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:13:23Z
dc.date.available2021-06-25T10:13:23Z
dc.date.issued2020-12-15
dc.description.abstractImmersed Interface Methods (IIM) arise as a very effective tool to solve many interface problems encountered in fluid dynamics, mechanics and other related fields of study. Despite their versatility and potential, IIM-inspired techniques impose as constraints different types of jump conditions in order to be mathematically tractable and usable in practice. To cope with this issue, in this paper we introduce a novel Immersed Interface method for solving Poisson equations with discontinuous coefficients on Cartesian grids. Different from most conventional methods which assume some derivative information at the interface to produce a valid approximation, our approach reduces the number of regular constraints when solving the Poisson problem, requiring to be given only the ordinary jumps of the function. We combine Finite Difference schemes, ghost node strategy, correction formulas, and interpolation rules into a unified and stable numerical model. Moreover, the present method is capable of producing high-order solutions from a unique resource of available data. We attest to the accuracy and robustness of our single jump-based method through a variety of numerical experiments comprising Poisson problems with interfaces that can be now solved from a reduced number of jump conditions.en
dc.description.affiliationInstituto de Ciências Matemáticas e de Computação Universidade de São Paulo (USP), Av. Trabalhador São-carlense 400
dc.description.affiliationDept. de Engenharia de Energia Universidade Estadual Paulista (UNESP), Av. dos Barrageiros 1881
dc.description.affiliationUnespDept. de Engenharia de Energia Universidade Estadual Paulista (UNESP), Av. dos Barrageiros 1881
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdCAPES: DS-7250509/D
dc.identifierhttp://dx.doi.org/10.1016/j.jcp.2020.109791
dc.identifier.citationJournal of Computational Physics, v. 423.
dc.identifier.doi10.1016/j.jcp.2020.109791
dc.identifier.issn1090-2716
dc.identifier.issn0021-9991
dc.identifier.scopus2-s2.0-85092691557
dc.identifier.urihttp://hdl.handle.net/11449/205323
dc.language.isoeng
dc.relation.ispartofJournal of Computational Physics
dc.sourceScopus
dc.subjectFinite difference
dc.subjectImmersed interface methods
dc.subjectIrregular domains
dc.subjectNumerical analysis
dc.subjectPoisson equations
dc.titleA high-order immersed interface method free of derivative jump conditions for Poisson equations on irregular domainsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-1073-9939[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Rosanapt

Arquivos