Logotipo do repositório
 

Publicação:
Application of the natural stress formulation for solving unsteady viscoelastic contraction flows

dc.contributor.authorEvans, Jonathan D.
dc.contributor.authorFranca, Hugo L. [UNESP]
dc.contributor.authorOishi, Cassio M. [UNESP]
dc.contributor.institutionUniv Bath
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2019-10-04T12:37:12Z
dc.date.available2019-10-04T12:37:12Z
dc.date.issued2019-07-01
dc.description.abstractWe present a numerical scheme for a previously unexploited formulation of the equations for unsteady viscoelastic flow. The formulation aligns the polymer stress along particle paths/streamlines, utilising the characteristic curves associated with the hyperbolic part of the constitutive equations. We illustrate the approach for the Oldroyd-B model in the benchmark 4:1 contraction for moderate elasticity numbers. We show that the scheme is able to accurately capture the re-entrant corner singularity for the polymer stresses and the pressure, the latter variable being inaccurately determined by schemes using the traditional formulation in terms of Cartesian polymer stresses. A space-step restriction for stability is derived, which can be numerically limiting in certain recirculation regions. This contrasts with the equivalent space-step restriction for the formulation in Cartesian stresses, which is limiting in flow regions of high velocity gradients, for example, at sharp corners in contraction flows. (C) 2019 Elsevier Inc. All rights reserved.en
dc.description.affiliationUniv Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
dc.description.affiliationUniv Estadual Paulista, Dept Matemat & Comp, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Matemat & Comp, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipRoyal Society Newton International Exchanges grant
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2013/07375-0
dc.description.sponsorshipIdFAPESP: 2015/50094-7
dc.description.sponsorshipIdFAPESP: 2016/00456-2
dc.description.sponsorshipIdFAPESP: 2017/04471-9
dc.description.sponsorshipIdRoyal Society Newton International Exchanges grant: 2015/NI150225
dc.description.sponsorshipIdCNPq: 307459/2016-0
dc.format.extent462-489
dc.identifierhttp://dx.doi.org/10.1016/j.jcp.2019.02.045
dc.identifier.citationJournal Of Computational Physics. San Diego: Academic Press Inc Elsevier Science, v. 388, p. 462-489, 2019.
dc.identifier.doi10.1016/j.jcp.2019.02.045
dc.identifier.issn0021-9991
dc.identifier.urihttp://hdl.handle.net/11449/185637
dc.identifier.wosWOS:000465563200025
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofJournal Of Computational Physics
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectNatural Stress Formulation
dc.subjectUnsteady viscoelastic flows
dc.subjectNumerical simulation
dc.subjectSharp corner flows
dc.titleApplication of the natural stress formulation for solving unsteady viscoelastic contraction flowsen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes8671745801940831[3]
unesp.author.orcid0000-0002-0904-6561[3]
unesp.departmentMatemática e Computação - FCTpt

Arquivos