Logotipo do repositório
 

Publicação:
Application of an Electronic Nose as a New Technology for Rapid Detection of Adulteration in Honey

dc.contributor.authorGonçalves, Wellington Belarmino
dc.contributor.authorTeixeira, Wanderson Sirley Reis [UNESP]
dc.contributor.authorCervantes, Evelyn Perez
dc.contributor.authorMioni, Mateus de Souza Ribeiro [UNESP]
dc.contributor.authorSampaio, Aryele Nunes da Cruz Encide [UNESP]
dc.contributor.authorMartins, Otávio Augusto [UNESP]
dc.contributor.authorGruber, Jonas
dc.contributor.authorPereira, Juliano Gonçalves [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-07-29T13:11:56Z
dc.date.available2023-07-29T13:11:56Z
dc.date.issued2023-04-01
dc.description.abstractThis work demonstrates the application of an electronic nose (e-nose) for discrimination between authentic and adulterated honey. The developed e-nose is based on electrodes covered with ionogel (ionic liquid + gelatin + Fe3O4 nanoparticle) films. Authentic and adulterated honey samples were submitted to e-nose analysis, and the capacity of the sensors for discrimination between authentic and adulterated honey was evaluated using principal component analysis (PCA) based on average relative response data. From the PCA biplot, it was possible to note two well-defined clusters and no intersection was observed. To evaluate the relative response data as input for autonomous classification, different machine learning algorithms were evaluated, namely instance based (IBK), Kstar, Trees-J48 (J48), random forest (RF), multilayer perceptron (MLP), naive Bayes (NB), and sequential minimal optimization (SMO). Considering the average data, the highest accuracy was obtained for Kstar: 100% (k-fold = 3). Additionally, this algorithm was also compared regarding its sensitivity and specificity, both being 100% for both features. Thus, due to the rapidity, simplicity, and accuracy of the developed methodology, the technology based on e-noses has the potential to be applied to honey quality control.en
dc.description.affiliationInstituto de Química Universidade de São Paulo, SP
dc.description.affiliationFaculdade de Medicina Veterinária e Zootecnia Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP
dc.description.affiliationInstituto de Matemática e Estatística Universidade de São Paulo, SP
dc.description.affiliationUnespFaculdade de Medicina Veterinária e Zootecnia Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), SP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCNPq: 165186/2015-1
dc.description.sponsorshipIdCNPq: 307501/2019-1
dc.description.sponsorshipIdCNPq: 424027/2018-6
dc.identifierhttp://dx.doi.org/10.3390/app13084881
dc.identifier.citationApplied Sciences (Switzerland), v. 13, n. 8, 2023.
dc.identifier.doi10.3390/app13084881
dc.identifier.issn2076-3417
dc.identifier.scopus2-s2.0-85156114554
dc.identifier.urihttp://hdl.handle.net/11449/247287
dc.language.isoeng
dc.relation.ispartofApplied Sciences (Switzerland)
dc.sourceScopus
dc.subjectelectronic nose
dc.subjecthoney adulteration
dc.subjecthoney quality control
dc.subjectmachine learning
dc.subjectmultivariate analysis
dc.subjectsensors
dc.titleApplication of an Electronic Nose as a New Technology for Rapid Detection of Adulteration in Honeyen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0001-7886-1570[4]
unesp.author.orcid0000-0003-2832-0199[7]
unesp.author.orcid0000-0002-8713-7506[8]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Medicina Veterinária e Zootecnia, Botucatupt

Arquivos