Logotipo do repositório
 

Publicação:
Tuning the magnetic properties of Sn1-x-yCe4+xCe3+yO2 nanoparticles: an experimental and theoretical approach

dc.contributor.authorAragon, F. F. H.
dc.contributor.authorVillegas-Lelovsky, L. [UNESP]
dc.contributor.authorCabral, L.
dc.contributor.authorLima, M. P.
dc.contributor.authorMesquita, A. [UNESP]
dc.contributor.authorCoaquira, J. A. H.
dc.contributor.institutionUniv Nacl San Agustin Arequipa
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade de Brasília (UnB)
dc.date.accessioned2021-06-25T12:40:48Z
dc.date.available2021-06-25T12:40:48Z
dc.date.issued2021-03-07
dc.description.abstractDuring the last decade, there was a substantial increase in the research on metal-doped oxide semiconductor nanoparticles due to advances in the engineering of nanomaterials and their potential application in spintronics, biomedicine and photocatalysis fields. In this regard, doping a nanomaterial is a powerful tool to tune its physicochemical properties. The aim of this work is to shine a new light on the role of the neighbouring elements on the oxidation state of the Ce-impurity, from both experimental and theoretical points of view. Herein, we present an accurate study of the mechanisms involved in the oxidation states of the Ce-ions during the doping process of SnO2 nanoparticles (NPs) prepared by the polymeric precursor method. X-ray diffraction measurements have displayed the tetragonal rutile-type SnO2 phase in all samples. However, the Bragg's peak (111) and (220) located at 2 theta similar to 29 degrees and similar to 47 degrees evidence the formation of a secondary CeO2 phase for samples with Ce content up to 10%. X-ray absorption near-edge structure (XANES) measurements, at Ce L3 edge, were performed on the NPs as a function of Ce content. The results show, on one side, the coexistence of Ce3+ and Ce4+ states in all samples; and on the other side, a clear reduction in the Ce3+ population driven by the increase of Ce content. It is shown that this is induced by the neighboring cation, and confirmed by magnetic measurements. The monotonic damping of the Ce3+/Ce4+ ratio experimentally, was connected with theoretical calculations via density functional theory by simulating a variety of point defects composed of Ce impurities and surrounding oxygen vacancies. We found that the number of oxygen vacancies around the Ce-ions is the main ingredient to change the Ce oxidation state, and hence the magnetic properties of Ce-doped SnO2 NPs. The presented results pave the way for handling the magnetic properties of oxides through the control of the oxidation state of impurities.en
dc.description.affiliationUniv Nacl San Agustin Arequipa, Lab Peliculas Delgadas, Escuela Profes Fis, Ave Independencia S-N, Arequipa, Peru
dc.description.affiliationUniv Estadual Paulista, Dept Fis, IGCE, BR-13506900 Rio Claro, SP, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Ctr Ciencias Exatas & Tecnol, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Fis Gleb Wataghin IFGW, BR-13083859 Campinas, SP, Brazil
dc.description.affiliationUniv Brasilia, Nucleo Fis Aplicada, Inst Fis, BR-70910900 Brasilia, DF, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Fis, IGCE, BR-13506900 Rio Claro, SP, Brazil
dc.description.sponsorshipCONCYTEC -FONDECYT
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFAPDF
dc.description.sponsorshipIdCONCYTEC -FONDECYT: E038-01
dc.description.sponsorshipIdCONCYTEC -FONDECYT: 07-2019-FONDECYT-BM-INC
dc.description.sponsorshipIdCAPES: 88887.319028/2019-00
dc.description.sponsorshipIdFAPESP: 2018/20729-9
dc.description.sponsorshipIdFAPESP: 17/02317-2
dc.description.sponsorshipIdFAPESP: 2013/12993-4
dc.description.sponsorshipIdCNPq: 301455/2017-1
dc.description.sponsorshipIdCNPq: 443652/2018-0
dc.description.sponsorshipIdFAPDF: 00193.0000151/2019-20
dc.format.extent1484-1495
dc.identifierhttp://dx.doi.org/10.1039/d0na00700e
dc.identifier.citationNanoscale Advances. Cambridge: Royal Soc Chemistry, v. 3, n. 5, p. 1484-1495, 2021.
dc.identifier.doi10.1039/d0na00700e
dc.identifier.issn2516-0230
dc.identifier.urihttp://hdl.handle.net/11449/210137
dc.identifier.wosWOS:000629748000024
dc.language.isoeng
dc.publisherRoyal Soc Chemistry
dc.relation.ispartofNanoscale Advances
dc.sourceWeb of Science
dc.titleTuning the magnetic properties of Sn1-x-yCe4+xCe3+yO2 nanoparticles: an experimental and theoretical approachen
dc.typeArtigo
dcterms.rightsHolderRoyal Soc Chemistry
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Geociências e Ciências Exatas, Rio Claropt
unesp.departmentFísica - IGCEpt

Arquivos