Publicação:
Robust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributions

dc.contributor.authorAbanto-Valle, C. A.
dc.contributor.authorBandyopadhyay, D.
dc.contributor.authorLachos, V. H.
dc.contributor.authorEnriquez, I. [UNESP]
dc.contributor.institutionUniversidade Federal do Rio de Janeiro (UFRJ)
dc.contributor.institutionMed Univ S Carolina
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:30:34Z
dc.date.available2014-05-20T15:30:34Z
dc.date.issued2010-12-01
dc.description.abstractA Bayesian analysis of stochastic volatility (SV) models using the class of symmetric scale mixtures of normal (SMN) distributions is considered. In the face of non-normality, this provides an appealing robust alternative to the routine use of the normal distribution. Specific distributions examined include the normal, student-t, slash and the variance gamma distributions. Using a Bayesian paradigm, an efficient Markov chain Monte Carlo (MCMC) algorithm is introduced for parameter estimation. Moreover, the mixing parameters obtained as a by-product of the scale mixture representation can be used to identify outliers. The methods developed are applied to analyze daily stock returns data on S&P500 index. Bayesian model selection criteria as well as out-of-sample forecasting results reveal that the SV models based on heavy-tailed SMN distributions provide significant improvement in model fit as well as prediction to the S&P500 index data over the usual normal model. (C) 2009 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Fed Rio de Janeiro, Dept Stat, BR-21945970 Rio de Janeiro, RJ, Brazil
dc.description.affiliationMed Univ S Carolina, Dept Biostat Bioinformat & Epidemiol, Charleston, SC 29425 USA
dc.description.affiliationUniv Estadual Campinas, Dept Stat, Campinas, SP, Brazil
dc.description.affiliationSão Paulo State Univ, Dept Stat, São Paulo, Brazil
dc.description.affiliationUnespSão Paulo State Univ, Dept Stat, São Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)
dc.description.sponsorshipUnited States National Institutes of Health
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPERJ: E-26/171.092/2006
dc.description.sponsorshipIdNIH: P20 RR017696-06
dc.format.extent2883-2898
dc.identifierhttp://dx.doi.org/10.1016/j.csda.2009.06.011
dc.identifier.citationComputational Statistics & Data Analysis. Amsterdam: Elsevier B.V., v. 54, n. 12, p. 2883-2898, 2010.
dc.identifier.doi10.1016/j.csda.2009.06.011
dc.identifier.issn0167-9473
dc.identifier.urihttp://hdl.handle.net/11449/39915
dc.identifier.wosWOS:000281333900002
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofComputational Statistics & Data Analysis
dc.relation.ispartofjcr1.181
dc.relation.ispartofsjr1,396
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.titleRobust Bayesian analysis of heavy-tailed stochastic volatility models using scale mixtures of normal distributionsen
dc.typeResumo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções