Logotipo do repositório
 

Publicação:
Using Amino Acid Correlation and Community Detection Algorithms to Identify Functional Determinants in Protein Families

dc.contributor.authorBleicher, Lucas
dc.contributor.authorLemke, Ney [UNESP]
dc.contributor.authorGarratt, Richard Charles
dc.contributor.institutionUniversidade Federal de Minas Gerais (UFMG)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2014-05-20T13:49:40Z
dc.date.available2014-05-20T13:49:40Z
dc.date.issued2011-12-20
dc.description.abstractCorrelated mutation analysis has a long history of interesting applications, mostly in the detection of contact pairs in protein structures. Based on previous observations that, if properly assessed, amino acid correlation data can also provide insights about functional sub-classes in a protein family, we provide a complete framework devoted to this purpose. An amino acid specific correlation measure is proposed, which can be used to build networks summarizing all correlation and anti-correlation patterns in a protein family. These networks can be submitted to community structure detection algorithms, resulting in subsets of correlated amino acids which can be further assessed by specific parameters and procedures that provide insight into the relationship between different communities, the individual importance of community members and the adherence of a given amino acid sequence to a given community. By applying this framework to three protein families with contrasting characteristics (the Fe/Mn-superoxide dismutases, the peroxidase-catalase family and the C-type lysozyme/alpha-lactalbumin family), we show how our method and the proposed parameters and procedures are related to biological characteristics observed in these protein families, highlighting their potential use in protein characterization and gene annotation.en
dc.description.affiliationUniv Fed Minas Gerais, Inst Ciencias Biol, Dept Bioquim & Imunol, Belo Horizonte, MG, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Fis & Biofis, Botucatu, SP, Brazil
dc.description.affiliationUniv São Paulo, Inst Fis Sao Carlos, Dept Fis & Informat, Sao Carlos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Fis & Biofis, Botucatu, SP, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 08/58734-1
dc.description.sponsorshipIdFAPESP: 98/14138-2
dc.format.extent11
dc.identifierhttp://dx.doi.org/10.1371/journal.pone.0027786
dc.identifier.citationPlos One. San Francisco: Public Library Science, v. 6, n. 12, p. 11, 2011.
dc.identifier.doi10.1371/journal.pone.0027786
dc.identifier.fileWOS000298666200001.pdf
dc.identifier.issn1932-6203
dc.identifier.lattes7977035910952141
dc.identifier.urihttp://hdl.handle.net/11449/17709
dc.identifier.wosWOS:000298666200001
dc.language.isoeng
dc.publisherPublic Library Science
dc.relation.ispartofPLOS ONE
dc.relation.ispartofjcr2.766
dc.relation.ispartofsjr1,164
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.titleUsing Amino Acid Correlation and Community Detection Algorithms to Identify Functional Determinants in Protein Familiesen
dc.typeArtigo
dcterms.licensehttp://www.plos.org/about/open-access/license/
dcterms.rightsHolderPublic Library Science
dspace.entity.typePublication
unesp.author.lattes7977035910952141
unesp.author.orcid0000-0001-7121-4952[1]
unesp.author.orcid0000-0001-7463-4303[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Botucatupt
unesp.departmentFísica e Biofísica - IBBpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000298666200001.pdf
Tamanho:
392.72 KB
Formato:
Adobe Portable Document Format

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: