Logotipo do repositório
 

Publicação:
Unsupervised Breast Masses Classification Through Optimum-Path Forest

dc.contributor.authorRibeiro, Patricia. B. [UNESP]
dc.contributor.authorPassos, Leandro. A. [UNESP]
dc.contributor.authorSilva, Luis. A. da [UNESP]
dc.contributor.authorCosta, Kelton A. P. da [UNESP]
dc.contributor.authorPapa, Joao P. [UNESP]
dc.contributor.authorRomero, Roseli A. F.
dc.contributor.authorTraina, C.
dc.contributor.authorRodrigues, P. P.
dc.contributor.authorKane, B.
dc.contributor.authorMarques, PMD
dc.contributor.authorTraina, AJM
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2018-11-27T08:16:27Z
dc.date.available2018-11-27T08:16:27Z
dc.date.issued2015-01-01
dc.description.abstractComputer-Aided Diagnosis (CAD) can be divided into two main categories : CADe (Computer-Aided Detection), which is focused on the detection of structures of interest, as well as to assist radiologists to find out signals of interest that might be hidden to human vision; and the CADx (ComputerAided Diagnosis), which works as a second observer, being responsible to give an opinion on a specific lesion. In CADe -based systems, the identification of mammograms with and without masses is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest. The main contribution of this study is to introduce the unsupervised classifier Optimum-Path Forest to identify breast masses, and to evaluate its performance against with two other unsupervised techniques (Gaussian Mixture Model and k-Means) using texture features from images obtained from a private dataset composed by 120 images with and without the presence of masses.en
dc.description.affiliationSao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
dc.description.affiliationUniv Sao Paulo, Dept Comp Sci, Sao Paulo, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp, Sao Paulo, Brazil
dc.format.extent238-243
dc.identifierhttp://dx.doi.org/10.1109/CBMS.2015.53
dc.identifier.citation2015 Ieee 28th International Symposium On Computer-based Medical Systems (cbms). Los Alamitos: Ieee Computer Soc, p. 238-243, 2015.
dc.identifier.doi10.1109/CBMS.2015.53
dc.identifier.issn1063-7125
dc.identifier.urihttp://hdl.handle.net/11449/165052
dc.identifier.wosWOS:000369099700050
dc.language.isoeng
dc.publisherIeee Computer Soc
dc.relation.ispartof2015 Ieee 28th International Symposium On Computer-based Medical Systems (cbms)
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectOptimum-Path Fores
dc.subjectBreast masses
dc.subjectMammography
dc.titleUnsupervised Breast Masses Classification Through Optimum-Path Foresten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee Computer Soc
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Ciências, Baurupt
unesp.departmentComputação - FCpt

Arquivos