Logotipo do repositório
 

Publicação:
Classification of petroleum well drilling operations using Support Vector Machine (SVM)

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

During the petroleum well drilling operation many mechanical and hydraulic parameters are monitored by an instrumentation system installed in the rig called a mud-logging system. These sensors, distributed in the rig, monitor different operation parameters such as weight on the hook and drillstring rotation. These measurements are known as mud-logging records and allow the online following of all the drilling process with well monitoring purposes. However, in most of the cases, these data are stored without taking advantage of all their potential. On the other hand, to make use of the mud-logging data, an analysis and interpretationt is required. That is not an easy task because of the large volume of information involved. This paper presents a Support Vector Machine (SVM) used to automatically classify the drilling operation stages through the analysis of some mud-logging parameters. In order to validate the results of SVM technique, it was compared to a classification elaborated by a Petroleum Engineering expert. © 2006 IEEE.

Descrição

Palavras-chave

Data reduction, Data storage equipment, Petroleum engineering, Support vector machines, Hydraulic parameters, Mud-logging system, Oil well drilling

Idioma

Inglês

Como citar

CIMCA 2006: International Conference on Computational Intelligence for Modelling, Control and Automation, Jointly with IAWTIC 2006: International Conference on Intelligent Agents Web Technologies ....

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação