Logotipo do repositório
 

Publicação:
Non-invasive spectroscopic methods to estimate orange firmness, peel thickness, and total pectin content

dc.contributor.authorBizzani, Marilia [UNESP]
dc.contributor.authorFlores, Douglas William Menezes
dc.contributor.authorColnago, Luiz Alberto
dc.contributor.authorFerreira, Marcos David
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionEmpresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
dc.date.accessioned2018-12-11T17:10:51Z
dc.date.available2018-12-11T17:10:51Z
dc.date.issued2017-07-01
dc.description.abstractOrange firmness, peel thickness, and total pectin content are associated with fruit quality and denote important parameters for the food industry. These attributes are usually determined through destructive methods that can be time-consuming and also unable to monitor fruit quality over time. Therefore, non-invasive methods such time-domain nuclear magnetic resonance (TD-NMR), near-infrared (NIR), and mid-infrared (MIR) spectroscopies may represent efficient alternatives to evaluate these quality attributes. In this work, partial least square regression (PLSR) models of TD-NMR relaxometry as well as NIR and MIR spectroscopic data were used to predict firmness, peel thickness, and total pectin content of fresh Valencia oranges. Principal component analyses (PCA) were applied to explain the correlations of orange ripening stage, flowering, and crop season with its physicochemical parameters. Data obtained through standard destructive methods were used to calibrate and validate the PLSR models. NIR and MIR showed the best PLSR models for orange firmness, with Pearson correlation coefficients (r) of 0.92 and 0.84 and squared errors of prediction (SEP) equal to 6.22 and 9.05 N, respectively. Orange peel thickness PLSR model was validated only by TD-NMR (r = 0.72; SEP = 0.49 mm). TD-NMR and NIR also presented potential to predict total pectin orange in orange (r = 0.76 and 0.70; SEP = 5.76% and 5.04%, respectively). Therefore, NIR presented a higher potential to predict orange firmness than MIR and TD-NMR. On the other hand, TD-NMR showed a higher prediction power concerning peel thickness than NIR and MIR. Both NIR and TD-NMR methods showed similar prediction powers for total pectin content.en
dc.description.affiliationDepartmento de Alimentos e Nutrição Faculdade de Ciências Farmacêuticas Universidade Estadual Paulista “Júlio de Mesquita Filho” — UNESP, Rodovia Araraquara — Jaú, Km 1
dc.description.affiliationDepartamento de Agroindústria Alimentos e Nutrição — LAN Escola Superior de Agricultura “Luiz de Queiroz” Universidade de São Paulo, Avenida Pádua Dias, 11
dc.description.affiliationEmbrapa Instrumentação, Rua XV de Novembro, 1452
dc.description.affiliationUnespDepartmento de Alimentos e Nutrição Faculdade de Ciências Farmacêuticas Universidade Estadual Paulista “Júlio de Mesquita Filho” — UNESP, Rodovia Araraquara — Jaú, Km 1
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 08/2014
dc.description.sponsorshipIdFAPESP: 13/23479-0
dc.description.sponsorshipIdCNPq: 303837-2013-6
dc.description.sponsorshipIdCNPq: 403075/2013-0
dc.format.extent168-174
dc.identifierhttp://dx.doi.org/10.1016/j.microc.2017.03.039
dc.identifier.citationMicrochemical Journal, v. 133, p. 168-174.
dc.identifier.doi10.1016/j.microc.2017.03.039
dc.identifier.file2-s2.0-85016262854.pdf
dc.identifier.issn0026-265X
dc.identifier.scopus2-s2.0-85016262854
dc.identifier.urihttp://hdl.handle.net/11449/174385
dc.language.isoeng
dc.relation.ispartofMicrochemical Journal
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectMIR
dc.subjectNIR
dc.subjectOrange
dc.subjectPLSR
dc.subjectQuality
dc.subjectTD-NMR
dc.titleNon-invasive spectroscopic methods to estimate orange firmness, peel thickness, and total pectin contenten
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentAlimentos e Nutrição - FCFpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85016262854.pdf
Tamanho:
513.37 KB
Formato:
Adobe Portable Document Format
Descrição: