Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

An improved impedance-based damage classification using self-organizing maps

dc.contributor.authorJunior, Pedro Oliveira [UNESP]
dc.contributor.authorConte, Salvatore
dc.contributor.authorD'Addona, Doriana M.
dc.contributor.authorAguiar, Paulo [UNESP]
dc.contributor.authorBapstista, Fabricio [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFraunhofer Joint Laboratory of Excellence on Advanced Production Technology (Fh-J_LEAPT Naples)
dc.contributor.institutionUniversity of Naples Federico II
dc.date.accessioned2020-12-12T01:34:01Z
dc.date.available2020-12-12T01:34:01Z
dc.date.issued2020-01-01
dc.description.abstractThe identification and severity of structural damages, especially in the early stage, is critical in structural health monitoring (SHM) systems. Among several approaches used to accomplish this goal, the electromechanical impedance (EMI) technique has taken place within nondestructive evaluation (NDE) methods. On the other hand, neural networks (NN) based on self-organizing maps (SOM) has been a promising tool in many engineering classification problems. However, there is a gap of application regarding the combination of the EMI technique and SOM NN. To encourage this, an enhanced EMI-based damage classification method using self-organizing features is proposed in the present research paper. A SOM NN architecture was implemented whose inputs were derived from representative features of the impedance signatures. As a result, self-organizing maps can be used as an effective tool to enhance the damage classification in EMI-based SHM applications. For the present application, the results indicated a promising and useful contribution to the grinding field.en
dc.description.affiliationUniv. Estadual Paulista UNESP School of Engineering Department of Electrical and Mechanical Engineering
dc.description.affiliationFraunhofer Joint Laboratory of Excellence on Advanced Production Technology (Fh-J_LEAPT Naples)
dc.description.affiliationDept. of Chemical Materials and Industrial Production Engineering University of Naples Federico II, Piazzale Tecchio 80
dc.description.affiliationUnespUniv. Estadual Paulista UNESP School of Engineering Department of Electrical and Mechanical Engineering
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: #2016/02831-5
dc.format.extent330-334
dc.identifierhttp://dx.doi.org/10.1016/j.procir.2020.05.057
dc.identifier.citationProcedia CIRP, v. 88, p. 330-334.
dc.identifier.doi10.1016/j.procir.2020.05.057
dc.identifier.issn2212-8271
dc.identifier.scopus2-s2.0-85089090352
dc.identifier.urihttp://hdl.handle.net/11449/199222
dc.language.isoeng
dc.relation.ispartofProcedia CIRP
dc.sourceScopus
dc.subjectDiagnostic and maintenance
dc.subjectElectromechanical impedance
dc.subjectGrinding
dc.subjectNeural networks
dc.subjectSelf-organizing maps
dc.subjectSensor monitoring
dc.subjectSHM
dc.titleAn improved impedance-based damage classification using self-organizing mapsen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication

Arquivos

Coleções