Publicação: Landau and Kolmogoroff type polynomial inequalities II
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
Let 0 < j < m ≤ n. Kolmogoroff type inequalities of the form ∥f(j)∥2 ≤ A∥f(m)∥ 2 + B∥f∥2 which hold for algebraic polynomials of degree n are established. Here the norm is defined by ∫ f2(x)dμ(x), where dμ(x) is any distribution associated with the Jacobi, Laguerre or Bessel orthogonal polynomials. In particular we characterize completely the positive constants A and B, for which the Landau weighted polynomial inequalities ∥f′∥ 2 ≤ A∥f″∥2 + B∥f∥ 2 hold. © Dynamic Publishers, Inc.
Descrição
Palavras-chave
Bessel polynomials, Extremal polynomials, Jacobi polynomials, Laguerre polynomials, Landau and Kolmogoroff type inequalities, Markov's inequality, Rayleigh-Ritz theorem
Idioma
Inglês
Como citar
Archives of Inequalities and Applications, v. 2, n. 2-3, p. 339-353, 2004.