Publicação: Machine learning, quantum chaos, and pseudorandom evolution
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Amer Physical Soc
Tipo
Artigo
Direito de acesso
Resumo
By modeling quantum chaotic dynamics with ensembles of random operators, we explore how machine learning algorithms can be used to detect pseudorandom behavior in qubit systems. We analyze samples consisting of pieces of correlation functions and find that machine learning algorithms are capable of determining the degree of pseudorandomness which a system is subject to in a precise sense. This is done without computing any correlators explicitly. Interestingly, even samples drawn from two-point functions are found to be sufficient to solve this classification problem. This presents the possibility of using deep learning algorithms to explore late time behavior in chaotic quantum systems which have been inaccessible to simulation.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Physical Review A. College Pk: Amer Physical Soc, v. 101, n. 5, 7 p., 2020.