Logotipo do repositório
 

Publicação:
Machine learning, quantum chaos, and pseudorandom evolution

dc.contributor.authorAlves, Daniel W. F. [UNESP]
dc.contributor.authorFlynn, Michael O.
dc.contributor.institutionUniv Calif Davis
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T20:00:15Z
dc.date.available2020-12-10T20:00:15Z
dc.date.issued2020-05-27
dc.description.abstractBy modeling quantum chaotic dynamics with ensembles of random operators, we explore how machine learning algorithms can be used to detect pseudorandom behavior in qubit systems. We analyze samples consisting of pieces of correlation functions and find that machine learning algorithms are capable of determining the degree of pseudorandomness which a system is subject to in a precise sense. This is done without computing any correlators explicitly. Interestingly, even samples drawn from two-point functions are found to be sufficient to solve this classification problem. This presents the possibility of using deep learning algorithms to explore late time behavior in chaotic quantum systems which have been inaccessible to simulation.en
dc.description.affiliationUniv Calif Davis, Ctr Quantum Math & Phys, Dept Phys, Davis, CA 95616 USA
dc.description.affiliationUniv Estadual Paulista, Sao Paulo State Univ, Inst Theoret Phys IFT, R Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Sao Paulo State Univ, Inst Theoret Phys IFT, R Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdCNPq: 146086/2015-5
dc.format.extent7
dc.identifierhttp://dx.doi.org/10.1103/PhysRevA.101.052338
dc.identifier.citationPhysical Review A. College Pk: Amer Physical Soc, v. 101, n. 5, 7 p., 2020.
dc.identifier.doi10.1103/PhysRevA.101.052338
dc.identifier.issn1050-2947
dc.identifier.urihttp://hdl.handle.net/11449/196914
dc.identifier.wosWOS:000535667400004
dc.language.isoeng
dc.publisherAmer Physical Soc
dc.relation.ispartofPhysical Review A
dc.sourceWeb of Science
dc.titleMachine learning, quantum chaos, and pseudorandom evolutionen
dc.typeArtigo
dcterms.licensehttp://publish.aps.org/authors/transfer-of-copyright-agreement
dcterms.rightsHolderAmer Physical Soc
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos