Publicação: Machine learning, quantum chaos, and pseudorandom evolution
dc.contributor.author | Alves, Daniel W. F. [UNESP] | |
dc.contributor.author | Flynn, Michael O. | |
dc.contributor.institution | Univ Calif Davis | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2020-12-10T20:00:15Z | |
dc.date.available | 2020-12-10T20:00:15Z | |
dc.date.issued | 2020-05-27 | |
dc.description.abstract | By modeling quantum chaotic dynamics with ensembles of random operators, we explore how machine learning algorithms can be used to detect pseudorandom behavior in qubit systems. We analyze samples consisting of pieces of correlation functions and find that machine learning algorithms are capable of determining the degree of pseudorandomness which a system is subject to in a precise sense. This is done without computing any correlators explicitly. Interestingly, even samples drawn from two-point functions are found to be sufficient to solve this classification problem. This presents the possibility of using deep learning algorithms to explore late time behavior in chaotic quantum systems which have been inaccessible to simulation. | en |
dc.description.affiliation | Univ Calif Davis, Ctr Quantum Math & Phys, Dept Phys, Davis, CA 95616 USA | |
dc.description.affiliation | Univ Estadual Paulista, Sao Paulo State Univ, Inst Theoret Phys IFT, R Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista, Sao Paulo State Univ, Inst Theoret Phys IFT, R Dr Bento T Ferraz 271, BR-01140070 Sao Paulo, SP, Brazil | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorshipId | CAPES: 001 | |
dc.description.sponsorshipId | CNPq: 146086/2015-5 | |
dc.format.extent | 7 | |
dc.identifier | http://dx.doi.org/10.1103/PhysRevA.101.052338 | |
dc.identifier.citation | Physical Review A. College Pk: Amer Physical Soc, v. 101, n. 5, 7 p., 2020. | |
dc.identifier.doi | 10.1103/PhysRevA.101.052338 | |
dc.identifier.issn | 1050-2947 | |
dc.identifier.uri | http://hdl.handle.net/11449/196914 | |
dc.identifier.wos | WOS:000535667400004 | |
dc.language.iso | eng | |
dc.publisher | Amer Physical Soc | |
dc.relation.ispartof | Physical Review A | |
dc.source | Web of Science | |
dc.title | Machine learning, quantum chaos, and pseudorandom evolution | en |
dc.type | Artigo | |
dcterms.license | http://publish.aps.org/authors/transfer-of-copyright-agreement | |
dcterms.rightsHolder | Amer Physical Soc | |
dspace.entity.type | Publication | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulo | pt |