Publicação: A comparative study on asymmetric reduction of ketones using the growing and resting cells of marine-derived fungi
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
Whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to optically active alcohols. Currently, most of the whole-cell catalytic performance involves resting cells rather than growing cell biotransformation, which is one-step process that benefits from the simultaneous growth and biotransformation, eliminating the need for catalysts preparation. In this paper, asymmetric reduction of 14 aromatic ketones to the corresponding enantiomerically pure alcohols was successfully conducted using the growing and resting cells of marine-derived fungi under optimized conditions. Good yields and excellent enantioselectivities were achieved with both methods. Although substrate inhibition might be a limiting factor for growing cell biotransformation, the selected strain can still completely convert 10-mM substrates into the desired products. The resting cell biotransformation showed a capacity to be recycled nine times without a significant decrease in the activity. This is the first study to perform asymmetric reduction of ketones by one-step growing cell biotransformation.
Descrição
Palavras-chave
Asymmetric reduction, Chiral alcohols, Growing cells, Marine fungi, Resting cells
Idioma
Inglês
Como citar
Marine Drugs, v. 16, n. 2, 2018.