Unlocking potential: Exploring the methane production potential in anaerobic co-digestion of cassava wastewater and glycerol
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
This study aimed at evaluating the feasibility of CH4 production in a mesophilic (30 °C) single-stage anaerobic co-digestion of cassava wastewater (CW) and glycerol in an anaerobic fluidized bed reactor (AFBR) with mixing ratio of 50 % / 50 % CW/Gly on a (chemical oxygen demand)COD basis. Thus, the following strategy was used: increasing the organic loading rate (OLR) (1–20 g COD.L−1.d−1) by increasing the substrate concentration (1–20 g COD.L−1) and applying a hydraulic detention time (HRT) of 24 h. The AFBR presented a maximum methane (CH4) content of 88.38±1.94 % and a CH4 yield (MY) of 293.48±18.37 mL of CH4.mL−1CODrem in the OLR of 1 g COD.L−1.d−1 and the maximum methane production rate (MPR) of 62.09±2.75 mL of CH4.L−1.h−1 in the OLR of 20 g COD.L−1.d−1. The conversion of glycerol and carbohydrates remained above 91±0.54 % and 82±2.79 %, respectively, and the COD conversion was above 80±0.65 %. The main metabolites were HAc, HPr, HBu, EtOH and HVa. The most abundant genera identified in the AFBR were Izemoplasmatales and Enterobacteriaceae for the bacteria domain, and Methanosaeta, Methanobacterium for the archaea domain. The single-stage system is robust and can operate with higher OLR without reducing the efficiency of wastewater treatment and CH4 production.
Descrição
Palavras-chave
Agro-industrial residues, Methanobacterium, Methanogenesis, Methanosaeta, Soluble metabolites
Idioma
Inglês
Citação
Journal of Environmental Chemical Engineering, v. 12, n. 3, 2024.




