Logotipo do repositório
 

Publicação:
Detection of Malicious Domains Using Passive DNS with XGBoost

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Ieee

Tipo

Trabalho apresentado em evento

Direito de acesso

Resumo

The Domain Name System (DNS) has as its main function the mapping of domain names to IPs and vice versa. Because of its function combined with the exponential growth of the internet, it has become an essential component. Because of this, attackers use DNS for malicious activities, such as Phishing, Fast-Flux Domains, DGAs, in addition to the spread of malware. In this paper we present an approach for automatic detection of malicious domains using a Passive DNS dataset combined with machine learning techniques. One way to perform the detection of these malicious domains is by blocklists, which can take some time before someone reports and there is human analysis. The model presented in this work is capable of detecting malicious domains at an early stage through its Passive DNS traffic. 12 features were extracted exclusively from DNS traffic. Our model makes use of the XGBoost supervised machine learning algorithm, and obtains an average AUC of 0.976.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

2020 Ieee International Conference On Intelligence And Security Informatics (isi). New York: Ieee, p. 59-61, 2020.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação