Logotipo do repositório
 

Publicação:
Detection of Malicious Domains Using Passive DNS with XGBoost

dc.contributor.authorSilveira, Marcos Rogerio [UNESP]
dc.contributor.authorCansian, Adriano Mauro [UNESP]
dc.contributor.authorKobayashi, Hugo Koji
dc.contributor.authorIEEE
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionNICBR Brazilian Network Informat Ctr
dc.date.accessioned2021-06-26T07:27:34Z
dc.date.available2021-06-26T07:27:34Z
dc.date.issued2020-01-01
dc.description.abstractThe Domain Name System (DNS) has as its main function the mapping of domain names to IPs and vice versa. Because of its function combined with the exponential growth of the internet, it has become an essential component. Because of this, attackers use DNS for malicious activities, such as Phishing, Fast-Flux Domains, DGAs, in addition to the spread of malware. In this paper we present an approach for automatic detection of malicious domains using a Passive DNS dataset combined with machine learning techniques. One way to perform the detection of these malicious domains is by blocklists, which can take some time before someone reports and there is human analysis. The model presented in this work is capable of detecting malicious domains at an early stage through its Passive DNS traffic. 12 features were extracted exclusively from DNS traffic. Our model makes use of the XGBoost supervised machine learning algorithm, and obtains an average AUC of 0.976.en
dc.description.affiliationUNESP Univ Estadual Paulista, Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationNICBR Brazilian Network Informat Ctr, Sao Paulo, Brazil
dc.description.affiliationUnespUNESP Univ Estadual Paulista, Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipIdFUNDUNESP: 2764/2018
dc.format.extent59-61
dc.identifier.citation2020 Ieee International Conference On Intelligence And Security Informatics (isi). New York: Ieee, p. 59-61, 2020.
dc.identifier.urihttp://hdl.handle.net/11449/210787
dc.identifier.wosWOS:000651584500012
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2020 Ieee International Conference On Intelligence And Security Informatics (isi)
dc.sourceWeb of Science
dc.titleDetection of Malicious Domains Using Passive DNS with XGBoosten
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentEngenharia Mecânica - FEBpt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos