Logotipo do repositório
 

Publicação:
Soybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithms

dc.contributor.authorLarios, Gustavo
dc.contributor.authorNicolodelli, Gustavo
dc.contributor.authorRibeiro, Matheus
dc.contributor.authorCanassa, Thalita
dc.contributor.authorReis, Andre R. [UNESP]
dc.contributor.authorOliveira, Samuel L.
dc.contributor.authorAlves, Charline Z.
dc.contributor.authorMarangoni, Bruno S.
dc.contributor.authorCena, Cícero
dc.contributor.institutionUniversidade Federal de Mato Grosso do Sul (UFMS)
dc.contributor.institutionUniversidade Federal de Santa Catarina (UFSC)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T10:11:10Z
dc.date.available2021-06-25T10:11:10Z
dc.date.issued2020-09-21
dc.description.abstractA novel approach to distinguish soybean seed vigor based on Fourier transform infrared spectroscopy (FTIR) associated with chemometric methods is presented. Batches with high and low vigor soybean seeds were analyzed. Support vector machine (SVM), K-nearest neighbors (KNN), and discriminant analysis were applied to the raw spectral and reduced-dimensionality data from PCA (principal component analysis). Proteins, fatty acids, and amides were identified as the main molecules responsible for the discrimination of the batches. The cross-validation tests pointed out that high vigor soybean seeds were successfully discriminated from low vigor ones with an accuracy of 100%. These findings indicate FTIR spectroscopy associated with multivariate analysis as a new alternative approach to discriminate seed vigor.en
dc.description.affiliationUFMS-Universidade Federal de Mato Grosso Do sul
dc.description.affiliationUFSC-Universidade Federal de Santa Catarina
dc.description.affiliationUNESP-Universidade Estadual Paulista Júlio de Mesquista Filho
dc.description.affiliationUnespUNESP-Universidade Estadual Paulista Júlio de Mesquista Filho
dc.format.extent4303-4309
dc.identifierhttp://dx.doi.org/10.1039/d0ay01238f
dc.identifier.citationAnalytical Methods, v. 12, n. 35, p. 4303-4309, 2020.
dc.identifier.doi10.1039/d0ay01238f
dc.identifier.issn1759-9679
dc.identifier.issn1759-9660
dc.identifier.scopus2-s2.0-85091128362
dc.identifier.urihttp://hdl.handle.net/11449/205179
dc.language.isoeng
dc.relation.ispartofAnalytical Methods
dc.sourceScopus
dc.titleSoybean seed vigor discrimination by using infrared spectroscopy and machine learning algorithmsen
dc.typeArtigo
dspace.entity.typePublication

Arquivos

Coleções