Logotipo do repositório
 

Publicação:
Artificial neural networks for machining processes surface roughness modeling

dc.contributor.authorPontes, Fabricio J.
dc.contributor.authorFerreira, Joao R.
dc.contributor.authorSilva, Messias B. [UNESP]
dc.contributor.authorPaiva, Anderson P.
dc.contributor.authorBalestrassi, Pedro Paulo
dc.contributor.institutionUniversidade Federal de Itajubá (UNIFEI)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:31:03Z
dc.date.available2014-05-20T15:31:03Z
dc.date.issued2010-08-01
dc.description.abstractIn recent years, several papers on machining processes have focused on the use of artificial neural networks for modeling surface roughness. Even in such a specific niche of engineering literature, the papers differ considerably in terms of how they define network architectures and validate results, as well as in their training algorithms, error measures, and the like. Furthermore, a perusal of the individual papers leaves a researcher without a clear, sweeping view of what the field's cutting edge is. Hence, this work reviews a number of these papers, providing a summary and analysis of the findings. Based on recommendations made by scholars of neurocomputing and statistics, the review includes a set of comparison criteria as well as assesses how the research findings were validated. This work also identifies trends in the literature and highlights their main differences. Ultimately, this work points to underexplored issues for future research and shows ways to improve how the results are validated.en
dc.description.affiliationUniversidade Federal de Itajubá (UNIFEI), Ind Engn Inst, Itajuba, MG, Brazil
dc.description.affiliationSão Paulo State Univ, São Paulo, Brazil
dc.description.affiliationUnespSão Paulo State Univ, São Paulo, Brazil
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.format.extent879-902
dc.identifierhttp://dx.doi.org/10.1007/s00170-009-2456-2
dc.identifier.citationInternational Journal of Advanced Manufacturing Technology. London: Springer London Ltd, v. 49, n. 9-12, p. 879-902, 2010.
dc.identifier.doi10.1007/s00170-009-2456-2
dc.identifier.issn0268-3768
dc.identifier.urihttp://hdl.handle.net/11449/40291
dc.identifier.wosWOS:000280846600005
dc.language.isoeng
dc.publisherSpringer London Ltd
dc.relation.ispartofInternational Journal of Advanced Manufacturing Technology
dc.relation.ispartofjcr2.601
dc.relation.ispartofsjr0,994
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectArtificial neural networksen
dc.subjectMachiningen
dc.subjectSurface roughnessen
dc.subjectModelingen
dc.titleArtificial neural networks for machining processes surface roughness modelingen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer London Ltd
dspace.entity.typePublication
unesp.author.orcid0000-0003-2772-0043[5]
unesp.author.orcid0000-0002-8656-0791[3]
unesp.author.orcid0000-0002-8199-411X[4]
unesp.author.orcid0000-0003-4605-8948[2]

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:

Coleções