Publicação: CORRECTORS FOR THE NEUMANN PROBLEM IN THIN DOMAINS WITH LOCALLY PERIODIC OSCILLATORY STRUCTURE
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Brown Univ
Tipo
Artigo
Direito de acesso
Acesso aberto

Resumo
In this paper we are concerned with convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain exhibiting highly oscillatory behavior in part of its boundary. We deal with the resonant case in which the height, amplitude and period of the oscillations are all of the same order, which is given by a small parameter epsilon > 0. Applying an appropriate corrector approach we get strong convergence when we replace the original solutions by a kind of first-order expansion through the Multiple-Scale Method.
Descrição
Palavras-chave
Thin domains, correctors, boundary oscillation, homogenization
Idioma
Inglês
Como citar
Quarterly Of Applied Mathematics. Boston: Brown Univ, v. 73, n. 3, p. 537-552, 2015.