Publicação: UNSUPERVISED LAND-COVER CLASSIFICATION THROUGH HYPER-HEURISTIC-BASED HARMONY SEARCH
Carregando...
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Ieee
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
Unsupervised land-cover classification aims at learning intrinsic properties of spectral and spatial features for the task of area coverage in urban and rural areas. In this paper, we propose to model the problem of optimizing the well-known k means algorithm by combining different variations of the Harmony Search technique using Genetic Programming (GP). We have shown GP can improve the recognition rates when using one optimization technique only, but it still deserves a deeper study when we have a very good individual technique to be combined.
Descrição
Palavras-chave
Clustering, Land-cover classification, Machine Learning, Genetic Programming
Idioma
Inglês
Como citar
2015 Ieee International Geoscience And Remote Sensing Symposium (igarss). New York: Ieee, p. 69-72, 2015.