Logotipo do repositório
 

Publicação:
SOIL MOISTURE ESTIMATION THROUGH MACHINE LEARNING USING UNMANNED AERIAL VEHICLE (UAV) IMAGES

dc.contributor.authorSafre, Anderson Luiz dos Santos [UNESP]
dc.contributor.authorFernandes, Caio Nascimento [UNESP]
dc.contributor.authorSaad, João Carlos Cury [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2023-03-01T20:39:52Z
dc.date.available2023-03-01T20:39:52Z
dc.date.issued2021-07-01
dc.description.abstractThe soil moisture is an important parameter for the calculation of water depth and irrigation management since it is directly related to the soil water content. Remote sensing techniques combined with statistical models can be used to estimate the spatial variability of soil moisture, extrapolating point measurements. The objective of this study was to determine the soil moisture through machine learning algorithms such as Support Vector Regression (SVR), Random Forests (RF), and Artificial Neural Networks (ANN). High resolution multispectral images obtained by an Unmanned Aerial Vehicle (UAV) in an irrigated bean area at the Experimental Lageado Farm at Unesp in Botucatu, SP, Brazil, were used. The reflectances in the Green, Red and Near Infrared bands along with the NDVI vegetation index were used as inputs for the models. All the algorithms performed well; however, the model that best fitted the data was the SVR, with mean square error (RMSE) of 0.46% of the estimated soil moisture and determination coefficient (R²) of 0.71.en
dc.description.affiliationDepartamento de Engenharia Rural UNESP-Faculdade de Ciências Agronômicas, R. José Barbosa de Barros, 1780, SP
dc.description.affiliationUnespDepartamento de Engenharia Rural UNESP-Faculdade de Ciências Agronômicas, R. José Barbosa de Barros, 1780, SP
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdCNPq: 131325/2020-5
dc.description.sponsorshipIdCAPES: DS 88882.433001/2019-01
dc.format.extent684-700
dc.identifierhttp://dx.doi.org/10.15809/irriga.2021v26n3p684-700
dc.identifier.citationIRRIGA, v. 26, n. 3, p. 684-700, 2021.
dc.identifier.doi10.15809/irriga.2021v26n3p684-700
dc.identifier.issn1808-3765
dc.identifier.issn1413-7895
dc.identifier.scopus2-s2.0-85129495947
dc.identifier.urihttp://hdl.handle.net/11449/240944
dc.language.isopor
dc.relation.ispartofIRRIGA
dc.sourceScopus
dc.subjectartificial neural networks
dc.subjectmachine learning
dc.subjectsoil moisture
dc.subjectUAV
dc.titleSOIL MOISTURE ESTIMATION THROUGH MACHINE LEARNING USING UNMANNED AERIAL VEHICLE (UAV) IMAGESen
dc.titleESTIMATIVA DE UMIDADE DO SOLO POR MEIO DE APRENDIZADO DE MÁQUINA USANDO IMAGENS DE VEICULO AÉREO NÃO TRIPULADO (VANT)pt
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Rural - FCApt

Arquivos