Publicação: SOIL MOISTURE ESTIMATION THROUGH MACHINE LEARNING USING UNMANNED AERIAL VEHICLE (UAV) IMAGES
dc.contributor.author | Safre, Anderson Luiz dos Santos [UNESP] | |
dc.contributor.author | Fernandes, Caio Nascimento [UNESP] | |
dc.contributor.author | Saad, João Carlos Cury [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.date.accessioned | 2023-03-01T20:39:52Z | |
dc.date.available | 2023-03-01T20:39:52Z | |
dc.date.issued | 2021-07-01 | |
dc.description.abstract | The soil moisture is an important parameter for the calculation of water depth and irrigation management since it is directly related to the soil water content. Remote sensing techniques combined with statistical models can be used to estimate the spatial variability of soil moisture, extrapolating point measurements. The objective of this study was to determine the soil moisture through machine learning algorithms such as Support Vector Regression (SVR), Random Forests (RF), and Artificial Neural Networks (ANN). High resolution multispectral images obtained by an Unmanned Aerial Vehicle (UAV) in an irrigated bean area at the Experimental Lageado Farm at Unesp in Botucatu, SP, Brazil, were used. The reflectances in the Green, Red and Near Infrared bands along with the NDVI vegetation index were used as inputs for the models. All the algorithms performed well; however, the model that best fitted the data was the SVR, with mean square error (RMSE) of 0.46% of the estimated soil moisture and determination coefficient (R²) of 0.71. | en |
dc.description.affiliation | Departamento de Engenharia Rural UNESP-Faculdade de Ciências Agronômicas, R. José Barbosa de Barros, 1780, SP | |
dc.description.affiliationUnesp | Departamento de Engenharia Rural UNESP-Faculdade de Ciências Agronômicas, R. José Barbosa de Barros, 1780, SP | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorshipId | CNPq: 131325/2020-5 | |
dc.description.sponsorshipId | CAPES: DS 88882.433001/2019-01 | |
dc.format.extent | 684-700 | |
dc.identifier | http://dx.doi.org/10.15809/irriga.2021v26n3p684-700 | |
dc.identifier.citation | IRRIGA, v. 26, n. 3, p. 684-700, 2021. | |
dc.identifier.doi | 10.15809/irriga.2021v26n3p684-700 | |
dc.identifier.issn | 1808-3765 | |
dc.identifier.issn | 1413-7895 | |
dc.identifier.scopus | 2-s2.0-85129495947 | |
dc.identifier.uri | http://hdl.handle.net/11449/240944 | |
dc.language.iso | por | |
dc.relation.ispartof | IRRIGA | |
dc.source | Scopus | |
dc.subject | artificial neural networks | |
dc.subject | machine learning | |
dc.subject | soil moisture | |
dc.subject | UAV | |
dc.title | SOIL MOISTURE ESTIMATION THROUGH MACHINE LEARNING USING UNMANNED AERIAL VEHICLE (UAV) IMAGES | en |
dc.title | ESTIMATIVA DE UMIDADE DO SOLO POR MEIO DE APRENDIZADO DE MÁQUINA USANDO IMAGENS DE VEICULO AÉREO NÃO TRIPULADO (VANT) | pt |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.department | Engenharia Rural - FCA | pt |