Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Time series of images to improve tree species classification

dc.contributor.authorMiyoshi, G. T. [UNESP]
dc.contributor.authorImai, N. N. [UNESP]
dc.contributor.authorDe Moraes, M. V.A. [UNESP]
dc.contributor.authorTommaselli, A. M.G. [UNESP]
dc.contributor.authorNäsi, R.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionFinnish Geospatial Research Institute FGI
dc.date.accessioned2018-12-11T17:15:59Z
dc.date.available2018-12-11T17:15:59Z
dc.date.issued2017-10-19
dc.description.abstractTree species classification provides valuable information to forest monitoring and management. The high floristic variation of the tree species appears as a challenging issue in the tree species classification because the vegetation characteristics changes according to the season. To help to monitor this complex environment, the imaging spectroscopy has been largely applied since the development of miniaturized sensors attached to Unmanned Aerial Vehicles (UAV). Considering the seasonal changes in forests and the higher spectral and spatial resolution acquired with sensors attached to UAV, we present the use of time series of images to classify four tree species. The study area is an Atlantic Forest area located in the western part of São Paulo State. Images were acquired in August 2015 and August 2016, generating three data sets of images: only with the image spectra of 2015; only with the image spectra of 2016; with the layer stacking of images from 2015 and 2016. Four tree species were classified using Spectral angle mapper (SAM), Spectral information divergence (SID) and Random Forest (RF). The results showed that SAM and SID caused an overfitting of the data whereas RF showed better results and the use of the layer stacking improved the classification achieving a kappa coefficient of 18.26%.en
dc.description.affiliationPost Graduate Program in Cartographic Science São Paulo State University (UNESP)
dc.description.affiliationDept. of Cartography São Paulo State University (UNESP)
dc.description.affiliationFinnish Geospatial Research Institute FGI, Geodeetinrinne 2, P.O. Box 15
dc.description.affiliationUnespPost Graduate Program in Cartographic Science São Paulo State University (UNESP)
dc.description.affiliationUnespDept. of Cartography São Paulo State University (UNESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCNPq: 153854/2016-2
dc.description.sponsorshipIdFAPESP: 2013/50426-4
dc.format.extent123-128
dc.identifierhttp://dx.doi.org/10.5194/isprs-archives-XLII-3-W3-123-2017
dc.identifier.citationInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, v. 42, n. 3W3, p. 123-128, 2017.
dc.identifier.doi10.5194/isprs-archives-XLII-3-W3-123-2017
dc.identifier.file2-s2.0-85033710909.pdf
dc.identifier.issn1682-1750
dc.identifier.scopus2-s2.0-85033710909
dc.identifier.urihttp://hdl.handle.net/11449/175481
dc.language.isoeng
dc.relation.ispartofInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectHyperspectral image
dc.subjectRandom Forest
dc.subjectSAM
dc.subjectSID
dc.subjectTime series
dc.subjectTree species classification
dc.subjectUAV
dc.titleTime series of images to improve tree species classificationen
dc.typeTrabalho apresentado em evento
dspace.entity.typePublication
unesp.author.lattes5493428631948910[4]
unesp.author.orcid0000-0003-0483-1103[4]
unesp.departmentCartografia - FCTpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85033710909.pdf
Tamanho:
803.74 KB
Formato:
Adobe Portable Document Format
Descrição: