Publicação: An Ensemble-based Approach for Breast Mass Classification in Mammography Images
Carregando...
Arquivos
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Spie-int Soc Optical Engineering
Tipo
Trabalho apresentado em evento
Direito de acesso
Acesso aberto

Resumo
Mammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naIve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%.
Descrição
Palavras-chave
Idioma
Inglês
Como citar
Medical Imaging 2017: Computer-aided Diagnosis. Bellingham: Spie-int Soc Optical Engineering, v. 10134, 8 p., 2017.