Logotipo do repositório
 

Publicação:
An Ensemble-based Approach for Breast Mass Classification in Mammography Images

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Spie-int Soc Optical Engineering

Tipo

Trabalho apresentado em evento

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Mammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naIve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%.

Descrição

Palavras-chave

Idioma

Inglês

Como citar

Medical Imaging 2017: Computer-aided Diagnosis. Bellingham: Spie-int Soc Optical Engineering, v. 10134, 8 p., 2017.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação