Publicação:
Effects of calcium hypochlorite and octenidine hydrochloride on L929 and human periodontal ligament cells

Carregando...
Imagem de Miniatura

Data

2019-05-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

The aim of this study was to assess cytotoxicity and cell migration of calcium hypochlorite [Ca(OCl)2] and octenidine hydrochloride-OCT (Octenisept®, Schülke & Mayr, Norderstedt, Germany) in L929 and human periodontal ligament (hPDL) cells. The cells were exposed to different doses of different solutions: 2.5% and 5% Ca(OCl)2, 0.1% OCT, 2.5% NaOCl and 2% CHX for 10 min. Cell viability was assessed by methyl-thiazol-tetrazolium (MTT) and neutral red (NR) assays, and cell migration was determined by wound-healing assay. Statistical analysis was performed by two-way ANOVA and Bonferroni tests (α=0.05). The MTT and NR assays revealed that 0.1% OCT was less cytotoxic in hPDL cells (p<0.05), followed by 2% CHX and 2.5% Ca(OCl)2 (p<0.05). There was no significant difference between 2.5% NaOCl and 5% Ca(OCl)2 (p>0.05), but these solutions showed greater cytotoxicity than the others. The result was the same for L929 cells, except that there was no significant difference between 2% CHX and 2.5% Ca(OCl)2 (p>0.05). Wound-healing assay in L929 and hPDL cells showed that cell migration of 0.1% OCT, 2% CHX and 2.5% Ca(OCl)2 groups was higher than 5% Ca(OCl)2 and 2.5% NaOCl groups at 24 h (p<0.05). In conclusion, 0.1% OCT had lower cytotoxicity in tested cell lines than CHX, Ca(OCl)2 and NaOCl. Cell migration was higher for 0.1% OCT, 2% CHX and 2.5% Ca(OCl)2. Therefore, in terms of cytotoxicity, OCT and Ca(OCl)2 have the potential to be used as root canal irrigants.

Descrição

Idioma

Inglês

Como citar

Brazilian Dental Journal, v. 30, n. 3, p. 213-219, 2019.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação