Logotipo do repositório
 

Publicação:
A Study on Automatic Methods Based on Mathematical Morphology for Martian Dust Devil Tracks Detection

dc.contributor.authorStatella, Thiago
dc.contributor.authorPina, Pedro
dc.contributor.authorSilva, Erivaldo Antonio da [UNESP]
dc.contributor.authorMartin, C. S.
dc.contributor.authorKim, S. W.
dc.contributor.institutionInst Fed Educ Ciencia & Tecnol Mato Grosso IFMT
dc.contributor.institutionCtr Recursos Naturais Ambiente
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-10T22:02:36Z
dc.date.available2020-12-10T22:02:36Z
dc.date.issued2011-01-01
dc.description.abstractThis paper presents three methods for automatic detection of dust devils tracks in images of Mars. The methods are mainly based on Mathematical Morphology and results of their performance are analyzed and compared. A dataset of 21 images from the surface of Mars representative of the diversity of those track features were considered for developing, testing and evaluating our methods, confronting their outputs with ground truth images made manually. Methods 1 and 3, based on closing top-hat and path closing top-hat, respectively, showed similar mean accuracies around 90% but the time of processing was much greater for method 1 than for method 3. Method 2, based on radial closing, was the fastest but showed worse mean accuracy. Thus, this was the tiebreak factor.en
dc.description.affiliationInst Fed Educ Ciencia & Tecnol Mato Grosso IFMT, 95 Zulmira Canavarro, BR-78002520 Cuiaba, Brazil
dc.description.affiliationCtr Recursos Naturais Ambiente, Inst Super Tecn, P-1049001 Lisbon, Portugal
dc.description.affiliationUniv Estadual Paulista, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Fac Ciencias & Tecnol, BR-19060900 Presidente Prudente, Brazil
dc.format.extent533-+
dc.identifier.citationProgress In Pattern Recognition, Image Analysis, Computer Vision, And Applications. Berlin: Springer-verlag Berlin, v. 7042, p. 533-+, 2011.
dc.identifier.issn0302-9743
dc.identifier.urihttp://hdl.handle.net/11449/197413
dc.identifier.wosWOS:000307257600063
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofProgress In Pattern Recognition, Image Analysis, Computer Vision, And Applications
dc.sourceWeb of Science
dc.subjectMars
dc.subjectDust Devils Tracks
dc.subjectMathematical Morphology
dc.subjectFeature Detection
dc.titleA Study on Automatic Methods Based on Mathematical Morphology for Martian Dust Devil Tracks Detectionen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.orcid0000-0002-8656-9147[1]
unesp.author.orcid0000-0002-3199-7961[2]
unesp.author.orcid0000-0002-7069-0479[3]
unesp.departmentCartografia - FCTpt

Arquivos